BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 19166284)

  • 21. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining.
    Mecomber JS; Stalcup AM; Hurd D; Halsall HB; Heineman WR; Seliskar CJ; Wehmeyer KR; Limbach PA
    Anal Chem; 2006 Feb; 78(3):936-41. PubMed ID: 16448071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization.
    Xu G; Wang J; Chen Y; Zhang L; Wang D; Chen G
    Lab Chip; 2006 Jan; 6(1):145-8. PubMed ID: 16372082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels.
    Hatch AV; Herr AE; Throckmorton DJ; Brennan JS; Singh AK
    Anal Chem; 2006 Jul; 78(14):4976-84. PubMed ID: 16841920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic viscosity of polymers and biopolymers measured by microchip.
    Lee J; Tripathi A
    Anal Chem; 2005 Nov; 77(22):7137-47. PubMed ID: 16285659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurements of surface tension of organic solvents using a simple microfabricated chip.
    Liu J; Li H; Lin JM
    Anal Chem; 2007 Jan; 79(1):371-7. PubMed ID: 17194163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing.
    Greener J; Li W; Ren J; Voicu D; Pakharenko V; Tang T; Kumacheva E
    Lab Chip; 2010 Feb; 10(4):522-4. PubMed ID: 20126695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature.
    Duan H; Zhang L; Chen G
    J Chromatogr A; 2010 Jan; 1217(1):160-6. PubMed ID: 19945714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips.
    Chen Z; Zhang L; Chen G
    Electrophoresis; 2010 Aug; 31(15):2512-9. PubMed ID: 20665912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile fabrication of a rigid and chemically resistant micromixer system from photocurable inorganic polymer by static liquid photolithography (SLP).
    Fang Q; Kim DP; Li X; Yoon TH; Li Y
    Lab Chip; 2011 Aug; 11(16):2779-84. PubMed ID: 21713287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment.
    Tsao CW; Hromada L; Liu J; Kumar P; DeVoe DL
    Lab Chip; 2007 Apr; 7(4):499-505. PubMed ID: 17389967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low temperature bonding of poly(methylmethacrylate) electrophoresis microchips by in situ polymerisation.
    Chen G; Li J; Qu S; Chen D; Yang P
    J Chromatogr A; 2005 Nov; 1094(1-2):138-47. PubMed ID: 16257300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of PMMA microfluidic chips using disposable agar hydrogel templates.
    Yao X; Chen Z; Chen G
    Electrophoresis; 2009 Dec; 30(24):4225-9. PubMed ID: 20013907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New family of fluorinated polymer chips for droplet and organic solvent microfluidics.
    Begolo S; Colas G; Viovy JL; Malaquin L
    Lab Chip; 2011 Feb; 11(3):508-12. PubMed ID: 21113543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.