These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19166289)

  • 21. Double-layer electrode based on TiO2 nanotubes arrays for enhancing photovoltaic properties in dye-sensitized solar cells.
    He Z; Que W; Sun P; Ren J
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12779-83. PubMed ID: 24304127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Charge transport improvement employing TiO2 nanotube arrays as front-side illuminated dye-sensitized solar cell photoanodes.
    Lamberti A; Sacco A; Bianco S; Manfredi D; Cappelluti F; Hernandez S; Quaglio M; Pirri CF
    Phys Chem Chem Phys; 2013 Feb; 15(7):2596-602. PubMed ID: 22918400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sol-gel assisted ZnO nanorod array template to synthesize TiO(2) nanotube arrays.
    Qiu J; Yu W; Gao X; Li X
    Nanotechnology; 2006 Sep; 17(18):4695-8. PubMed ID: 21727599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.
    Xie ZB; Adams S; Blackwood DJ; Wang J
    Nanotechnology; 2008 Oct; 19(40):405701. PubMed ID: 21832630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells.
    Boercker JE; Enache-Pommer E; Aydil ES
    Nanotechnology; 2008 Mar; 19(9):095604. PubMed ID: 21817679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO₂ nanotube arrays.
    Guan XF; Huang SQ; Zhang QX; Shen X; Sun HC; Li DM; Luo YH; Yu RC; Meng QB
    Nanotechnology; 2011 Nov; 22(46):465402. PubMed ID: 22024771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.
    Kim JY; Kang SH; Kim HS; Sung YE
    Langmuir; 2010 Feb; 26(4):2864-70. PubMed ID: 19835409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping.
    Fabregat-Santiago F; Barea EM; Bisquert J; Mor GK; Shankar K; Grimes CA
    J Am Chem Soc; 2008 Aug; 130(34):11312-6. PubMed ID: 18671396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells.
    Roh DK; Patel R; Ahn SH; Kim DJ; Kim JH
    Nanoscale; 2011 Oct; 3(10):4162-9. PubMed ID: 21894346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled Synthesis of Well-Aligned and Highly Ordered TiO₂ Nanotubes Without Bundling for Enhanced Solar-Powered Photoelectrochemical Responses.
    Lai CW; Lau KS; Chou PM
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7934-7942. PubMed ID: 31196312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells.
    Jung HS; Lee JK; Nastasi M; Lee SW; Kim JY; Park JS; Hong KS; Shin H
    Langmuir; 2005 Nov; 21(23):10332-5. PubMed ID: 16262288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays.
    Yin Y; Jin Z; Hou F
    Nanotechnology; 2007 Dec; 18(49):495608. PubMed ID: 20442481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a TiO₂/Multi-Wall Carbon Nanotube Core-Shell Nanocomposite Synthesized by a Hydrothermal Method.
    Seo MH; Na KH; Yang WH; Song TH; Choi WY
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3582-3587. PubMed ID: 31748055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO2 nanotube fabrication with highly exposed (001) facets for enhanced conversion efficiency of solar cells.
    Jung MH; Chu MJ; Kang MG
    Chem Commun (Camb); 2012 May; 48(41):5016-8. PubMed ID: 22510816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Liang L; Cheng Y; Shi G; Jin L
    J Hazard Mater; 2008 Oct; 158(2-3):517-22. PubMed ID: 18440136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells.
    Yang M; Kim D; Jha H; Lee K; Paul J; Schmuki P
    Chem Commun (Camb); 2011 Feb; 47(7):2032-4. PubMed ID: 21184009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis.
    Ren X; Gershon T; Iza DC; Muñoz-Rojas D; Musselman K; Macmanus-Driscoll JL
    Nanotechnology; 2009 Sep; 20(36):365604. PubMed ID: 19687541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.