These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19166291)

  • 1. Adsorption-driven surface segregation of the less reactive alloy component.
    Andersson KJ; Calle-Vallejo F; Rossmeisl J; Chorkendorff I
    J Am Chem Soc; 2009 Feb; 131(6):2404-7. PubMed ID: 19166291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111).
    Stamenković VR; Arenz M; Lucas CA; Gallagher ME; Ross PN; Marković NM
    J Am Chem Soc; 2003 Mar; 125(9):2736-45. PubMed ID: 12603163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO adsorption on pure and binary-alloy gold clusters: a quantum chemical study.
    Joshi AM; Tucker MH; Delgass WN; Thomson KT
    J Chem Phys; 2006 Nov; 125(19):194707. PubMed ID: 17129150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO adsorption on Cu-Pd alloy surfaces: ligand versus ensemble effects.
    Sakong S; Mosch C; Gross A
    Phys Chem Chem Phys; 2007 Jun; 9(18):2216-25. PubMed ID: 17487318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cu/Pt near-surface alloy for water-gas shift catalysis.
    Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys.
    Chen W; Dalach P; Schneider WF; Wolverton C
    Langmuir; 2012 Mar; 28(10):4683-93. PubMed ID: 22352380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition.
    Neyman KM; Lim KH; Chen ZX; Moskaleva LV; Bayer A; Reindl A; Borgmann D; Denecke R; Steinrück HP; Rösch N
    Phys Chem Chem Phys; 2007 Jul; 9(27):3470-82. PubMed ID: 17612715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts.
    Yao Y; Goodman DW
    Phys Chem Chem Phys; 2014 Feb; 16(8):3823-9. PubMed ID: 24435048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coadsorption of hydrogen and CO on well-defined Pt(35)Ru(65)/Ru(0001) surface alloys--site specificity vs. adsorbate-adsorbate interactions.
    Diemant T; Rauscher H; Bansmann J; Behm RJ
    Phys Chem Chem Phys; 2010 Sep; 12(33):9801-10. PubMed ID: 20544100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ag on Pt(111): Changes in Electronic and CO Adsorption Properties upon PtAg/Pt(111) Monolayer Surface Alloy Formation.
    Diemant T; Schüttler KM; Behm RJ
    Chemphyschem; 2015 Oct; 16(14):2943-52. PubMed ID: 26272080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy.
    Vang RT; Laegsgaard E; Besenbacher F
    Phys Chem Chem Phys; 2007 Jul; 9(27):3460-9. PubMed ID: 17612714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From adlayer islands to surface alloy: structural and chemical changes on bimetallic PtRu/Ru(0001) surfaces.
    Diemant T; Bergbreiter A; Bansmann J; Hoster HE; Behm RJ
    Chemphyschem; 2010 Oct; 11(14):3123-32. PubMed ID: 20715276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys.
    Xu Y; Ruban AV; Mavrikakis M
    J Am Chem Soc; 2004 Apr; 126(14):4717-25. PubMed ID: 15070391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alloy formation and chemisorption at Zn/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD.
    Ho CS; Martono E; Banerjee S; Roszell J; Vohs J; Koel BE
    J Phys Chem A; 2013 Nov; 117(46):11684-94. PubMed ID: 23697391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO Chemisorption on Pt(111), Rh/Pt(111), and Pd/Pt(111).
    Tang H; Trout BL
    J Phys Chem B; 2005 Sep; 109(37):17630-4. PubMed ID: 16853256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.
    Stamenkovic VR; Mun BS; Arenz M; Mayrhofer KJ; Lucas CA; Wang G; Ross PN; Markovic NM
    Nat Mater; 2007 Mar; 6(3):241-7. PubMed ID: 17310139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and theoretical studies of ammonia decomposition activity on Fe-Pt, Co-Pt, and Cu-Pt bimetallic surfaces.
    Hansgen DA; Thomanek LM; Chen JG; Vlachos DG
    J Chem Phys; 2011 May; 134(18):184701. PubMed ID: 21568523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic composition-property relationship applied to SO2 chemisorption on Pt111 surfaces, alloys, and overlayers.
    Tang H; Trout BL
    J Phys Chem B; 2005 Apr; 109(15):6948-51. PubMed ID: 16851787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.