These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19167009)

  • 1. Thermodynamic cycle analysis for capacitive deionization.
    Biesheuvel PM
    J Colloid Interface Sci; 2009 Apr; 332(1):258-64. PubMed ID: 19167009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of membrane capacitive deionization including the effect of the electrode pore space.
    Biesheuvel PM; Zhao R; Porada S; van der Wal A
    J Colloid Interface Sci; 2011 Aug; 360(1):239-48. PubMed ID: 21592485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model.
    Wang L; Biesheuvel PM; Lin S
    J Colloid Interface Sci; 2018 Feb; 512():522-528. PubMed ID: 29096113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of Ion Separation by Electrosorption.
    Hemmatifar A; Ramachandran A; Liu K; Oyarzun DI; Bazant MZ; Santiago JG
    Environ Sci Technol; 2018 Sep; 52(17):10196-10204. PubMed ID: 30141621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic reversible cycles of electrochemical desalination with intercalation materials in symmetric and asymmetric configurations.
    Wang R; Lin S
    J Colloid Interface Sci; 2020 Aug; 574():152-161. PubMed ID: 32311537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent ion selectivity in capacitive charging of porous electrodes.
    Zhao R; van Soestbergen M; Rijnaarts HH; van der Wal A; Bazant MZ; Biesheuvel PM
    J Colloid Interface Sci; 2012 Oct; 384(1):38-44. PubMed ID: 22819395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions.
    García-Quismondo E; Santos C; Lado J; Palma J; Anderson MA
    Environ Sci Technol; 2013 Oct; 47(20):11866-72. PubMed ID: 24015835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy recovery in membrane capacitive deionization.
    Długołęcki P; van der Wal A
    Environ Sci Technol; 2013 May; 47(9):4904-10. PubMed ID: 23477563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic conduction and electrode polarization in a doped nonpolar liquid.
    Kim J; Anderson JL; Garoff S; Schlangen LJ
    Langmuir; 2005 Sep; 21(19):8620-9. PubMed ID: 16142939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.
    Tang W; He D; Zhang C; Kovalsky P; Waite TD
    Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes.
    Bhat AP; Reale ER; Del Cerro M; Smith KC; Cusick RD
    Water Res X; 2019 Apr; 3():100027. PubMed ID: 31193985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging.
    Shocron AN; Suss ME
    J Phys Condens Matter; 2017 Mar; 29(8):084003. PubMed ID: 28092627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.