BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

807 related articles for article (PubMed ID: 19167133)

  • 1. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.
    VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B
    J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Column studies on transport of deicing additive benzotriazole in a sandy aquifer and a zerovalent iron barrier.
    Jia Y; Breedveld GD; Aagaard P
    Chemosphere; 2007 Nov; 69(9):1409-18. PubMed ID: 17588639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level arsenite removal from groundwater by zero-valent iron.
    Lien HL; Wilkin RT
    Chemosphere; 2005 Apr; 59(3):377-86. PubMed ID: 15763090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier.
    Wilkin RT; Su C; Ford RG; Paul CJ
    Environ Sci Technol; 2005 Jun; 39(12):4599-605. PubMed ID: 16047798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of iron-based technologies in contaminated land and groundwater remediation: a review.
    Cundy AB; Hopkinson L; Whitby RL
    Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning.
    Roychowdhury T
    Int J Hyg Environ Health; 2010 Nov; 213(6):414-27. PubMed ID: 20956086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.
    Wilkin RT; Acree SD; Ross RR; Puls RW; Lee TR; Woods LL
    Sci Total Environ; 2014 Jan; 468-469():186-94. PubMed ID: 24021639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Aug; 78(4):291-312. PubMed ID: 16051393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.
    Liang L; Moline GR; Kamolpornwijit W; West OR
    J Contam Hydrol; 2005 Nov; 80(1-2):71-91. PubMed ID: 16126304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictions of long-term performance of granular iron permeable reactive barriers: field-scale evaluation.
    Jeen SW; Gillham RW; Przepiora A
    J Contam Hydrol; 2011 Apr; 123(1-2):50-64. PubMed ID: 21237528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation.
    Higgins MR; Olson TM
    Environ Sci Technol; 2009 Dec; 43(24):9432-8. PubMed ID: 20000540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK.
    Jarvis AP; Moustafa M; Orme PH; Younger PL
    Environ Pollut; 2006 Sep; 143(2):261-8. PubMed ID: 16443312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.