These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 19167215)

  • 1. Thermogravimetric kinetics of crude glycerol.
    Dou B; Dupont V; Williams PT; Chen H; Ding Y
    Bioresour Technol; 2009 May; 100(9):2613-20. PubMed ID: 19167215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TG-FTIR study on urea-formaldehyde resin residue during pyrolysis and combustion.
    Jiang X; Li C; Chi Y; Yan J
    J Hazard Mater; 2010 Jan; 173(1-3):205-10. PubMed ID: 19735979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the pyrolytic and hydrothermal decomposition of water hyacinth.
    Luo G; Strong PJ; Wang H; Ni W; Shi W
    Bioresour Technol; 2011 Jul; 102(13):6990-4. PubMed ID: 21558054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer.
    Shuping Z; Yulong W; Mingde Y; Chun L; Junmao T
    Bioresour Technol; 2010 Jan; 101(1):359-65. PubMed ID: 19720523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model.
    Yan JH; Zhu HM; Jiang XG; Chi Y; Cen KF
    J Hazard Mater; 2009 Mar; 162(2-3):646-51. PubMed ID: 18579296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis.
    Ounas A; Aboulkas A; El Harfi K; Bacaoui A; Yaacoubi A
    Bioresour Technol; 2011 Dec; 102(24):11234-8. PubMed ID: 22004591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis.
    Ceylan S; Topcu Y; Ceylan Z
    Bioresour Technol; 2014 Nov; 171():193-8. PubMed ID: 25194914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.
    Park YH; Kim J; Kim SS; Park YK
    Bioresour Technol; 2009 Jan; 100(1):400-5. PubMed ID: 18693012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal pyrolysis of fresh and waste fishing nets.
    Kim SS; Jeon JK; Park YK; Kim S
    Waste Manag; 2005; 25(8):811-7. PubMed ID: 16125061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logistic distributed activation energy model--part 2: application to cellulose pyrolysis.
    Cai J; Yang S; Li T
    Bioresour Technol; 2011 Feb; 102(3):3642-4. PubMed ID: 21134741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis.
    Zhu HM; Yan JH; Jiang XG; Lai YE; Cen KF
    J Hazard Mater; 2008 May; 153(1-2):670-6. PubMed ID: 17936504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-isothermal thermal decomposition reaction kinetics of dimethylhexane-1,6-dicarbamate (HDC).
    Li X; Li H; Liu H; Zhu G
    J Hazard Mater; 2011 Dec; 198():376-80. PubMed ID: 22050929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Thermal decomposition kinetics of ribavirin and its stability].
    Zhang J; Chen DH; Yuan YH; Gong YW
    Yao Xue Xue Bao; 2001 Jun; 36(6):452-5. PubMed ID: 12585132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis kinetics and decomposition characteristics of pine trees.
    Kim SS; Kim J; Park YH; Park YK
    Bioresour Technol; 2010 Dec; 101(24):9797-802. PubMed ID: 20709530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of biomass catalytic pyrolysis.
    Lu C; Song W; Lin W
    Biotechnol Adv; 2009; 27(5):583-7. PubMed ID: 19393731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.