These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19167316)

  • 1. Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins.
    Titushkin I; Cho M
    Biophys J; 2009 Jan; 96(2):717-28. PubMed ID: 19167316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling cellular biomechanics of human mesenchymal stem cells.
    Titushkin IA; Cho MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2090-3. PubMed ID: 19964578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells.
    Titushkin I; Cho M
    Biophys J; 2007 Nov; 93(10):3693-702. PubMed ID: 17675345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics.
    Titushkin I; Cho M
    J Biomech; 2011 Oct; 44(15):2692-8. PubMed ID: 21864840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nanosecond pulse electric fields on cellular elasticity.
    Dutta D; Asmar A; Stacey M
    Micron; 2015 May; 72():15-20. PubMed ID: 25732004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers.
    Titushkin I; Cho M
    Biophys J; 2006 Apr; 90(7):2582-91. PubMed ID: 16399828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells].
    Long H; Yang G; Ma K; Xiao Z; Ren X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Jul; 31(7):853-861. PubMed ID: 29798532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoskeletal changes of mesenchymal stem cells during differentiation.
    Yourek G; Hussain MA; Mao JJ
    ASAIO J; 2007; 53(2):219-28. PubMed ID: 17413564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking.
    Wu HW; Kuhn T; Moy VT
    Scanning; 1998 Aug; 20(5):389-97. PubMed ID: 9737018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures.
    Kumar A; Nune KC; Misra R
    J Biomater Appl; 2016 Oct; 31(4):594-605. PubMed ID: 27384179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Texture analyses show synergetic effects of biomechanical and biochemical stimulation on mesenchymal stem cell differentiation into early phase osteoblasts.
    Park SH; Shin JW; Kang YG; Hyun JS; Oh MJ; Shin JW
    Microsc Microanal; 2014 Feb; 20(1):219-27. PubMed ID: 24279928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell membrane tethers generate mechanical force in response to electrical stimulation.
    Brownell WE; Qian F; Anvari B
    Biophys J; 2010 Aug; 99(3):845-52. PubMed ID: 20682262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium mechanics of active cytoskeletal networks.
    Mizuno D; Tardin C; Schmidt CF; Mackintosh FC
    Science; 2007 Jan; 315(5810):370-3. PubMed ID: 17234946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes.
    Darling EM; Topel M; Zauscher S; Vail TP; Guilak F
    J Biomech; 2008; 41(2):454-64. PubMed ID: 17825308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells.
    Jackson WM; Jaasma MJ; Tang RY; Keaveny TM
    Am J Physiol Cell Physiol; 2008 Oct; 295(4):C1007-15. PubMed ID: 18701650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chapter 17: Application of laser tweezers to studies of membrane-cytoskeleton adhesion.
    Raucher D
    Methods Cell Biol; 2008; 89():451-66. PubMed ID: 19118686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro.
    Meazzini MC; Toma CD; Schaffer JL; Gray ML; Gerstenfeld LC
    J Orthop Res; 1998 Mar; 16(2):170-80. PubMed ID: 9621891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton.
    Yoshida M; Westlin WF; Wang N; Ingber DE; Rosenzweig A; Resnick N; Gimbrone MA
    J Cell Biol; 1996 Apr; 133(2):445-55. PubMed ID: 8609175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effects of the mechanical stress on the cytoskeleton filament F-actin of osteoblast-like cells in vitro].
    Chen G; Zhou Z; Zheng Y
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2002 Jun; 20(3):213-5. PubMed ID: 12600070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.