These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 19167338)

  • 41. A method for obtaining DNA from compost.
    Wu L; Li F; Deng C; Xu D; Jiang S; Xiong Y
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):389-95. PubMed ID: 19590869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A rapid and complete 4-step protocol for obtaining nucleotide sequence from E. coli genomic DNA from overnight cultures.
    Seetharam S; Dicker IB
    Biotechniques; 1991 Jul; 11(1):32, 34. PubMed ID: 1954014
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Application of multiplex semi-nested polymerase chain reaction in detection of pathogens in cerebrospinal fluid].
    Yan ZY; Wang B; Bi CX
    Zhonghua Liu Xing Bing Xue Za Zhi; 2003 Apr; 24(4):296-9. PubMed ID: 12820949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A method for extraction of high-quality and high-quantity genomic DNA generally applicable to pathogenic bacteria.
    Kalia A; Rattan A; Chopra P
    Anal Biochem; 1999 Nov; 275(1):1-5. PubMed ID: 10542102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Genotyping of nosocomial methicillin-resistant Staphylococcus aureus strains isolated from clinical specimens by rep-PCR].
    Güler I; Kılıç H; Atalay MA; Perçin D; Erçal BD
    Mikrobiyol Bul; 2011 Oct; 45(4):581-91. PubMed ID: 22090288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic nano fluids for isolation of genomic DNA and total RNA from various prokaryote and eukaryote cells.
    Ghahari S; Ghahari S; Nematzadeh GA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Dec; 1102-1103():125-134. PubMed ID: 30388702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Specific enrichment of prokaryotic DNA using a recombinant DNA-binding protein.
    Sandetskaya N; Naumann A; Hennig K; Kuhlmeier D
    Anal Bioanal Chem; 2014 Jun; 406(15):3755-62. PubMed ID: 24718438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of magnetite and silica-magnetite composites to the isolation of genomic DNA.
    Taylor JI; Hurst CD; Davies MJ; Sachsinger N; Bruce IJ
    J Chromatogr A; 2000 Aug; 890(1):159-66. PubMed ID: 10976803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DNA recovery from a single bacterial cell using charge-reversible magnetic nanoparticles.
    Maeda Y; Toyoda T; Mogi T; Taguchi T; Tanaami T; Yoshino T; Matsunaga T; Tanaka T
    Colloids Surf B Biointerfaces; 2016 Mar; 139():117-22. PubMed ID: 26704992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid Isolation of DNA from Staphylococcus.
    Krausz KL; Bose JL
    Methods Mol Biol; 2016; 1373():59-62. PubMed ID: 25682372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of gelatin-DNA interaction for optimised DNA extraction from gelatin and gelatin capsule.
    Mohamad NA; Mustafa S; El Sheikha AF; Khairil Mokhtar NF; Ismail A; Ali ME
    J Sci Food Agric; 2016 May; 96(7):2344-51. PubMed ID: 26441285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One-stop genomic DNA extraction by salicylic acid-coated magnetic nanoparticles.
    Zhou Z; Kadam US; Irudayaraj J
    Anal Biochem; 2013 Nov; 442(2):249-52. PubMed ID: 23911528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid isolation of DNA from Staphylococcus aureus.
    Dyer DW; Iandolo JJ
    Appl Environ Microbiol; 1983 Jul; 46(1):283-5. PubMed ID: 6193758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A rapid, inexpensive and effective method for the efficient isolation of genomic DNA from Gram-negative bacteria.
    Weerakkody LR; Witharana C
    Mol Genet Genomics; 2024 Mar; 299(1):26. PubMed ID: 38453747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gelatine-Coated Carbonyl Iron Particles and Their Utilization in Magnetorheological Suspensions.
    Plachy T; Rohrer P; Holcapkova P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoenabled Bioseparations: Current Developments and Future Prospects.
    Fahmy SA; Alawak M; Brüßler J; Bakowsky U; El Sayed MMH
    Biomed Res Int; 2019; 2019():4983291. PubMed ID: 30834268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application.
    Mondal S; Manivasagan P; Bharathiraja S; Santha Moorthy M; Kim HH; Seo H; Lee KD; Oh J
    Int J Nanomedicine; 2017; 12():8389-8410. PubMed ID: 29200851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bench-to-bedside translation of magnetic nanoparticles.
    Singh D; McMillan JM; Kabanov AV; Sokolsky-Papkov M; Gendelman HE
    Nanomedicine (Lond); 2014 Apr; 9(4):501-16. PubMed ID: 24910878
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly sensitive and rapid detection of Pseudomonas aeruginosa based on magnetic enrichment and magnetic separation.
    Tang Y; Zou J; Ma C; Ali Z; Li Z; Li X; Ma N; Mou X; Deng Y; Zhang L; Li K; Lu G; Yang H; He N
    Theranostics; 2013; 3(2):85-92. PubMed ID: 23424183
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.