These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 19167790)

  • 1. Migration and bioavailability of (137)Cs in forest soil of southern Germany.
    Konopleva I; Klemt E; Konoplev A; Zibold G
    J Environ Radioact; 2009 Apr; 100(4):315-21. PubMed ID: 19167790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of fertilizing on the (137)Cs soil-plant transfer in a spruce forest of Southern Germany.
    Zibold G; Klemt E; Konopleva I; Konoplev A
    J Environ Radioact; 2009 Jun; 100(6):489-96. PubMed ID: 19375834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events.
    Camps M; Hillier S; Vidal M; Rauret G
    J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 1: radiostrontium and radiocaesium.
    Gil-García C; Rigol A; Vidal M
    J Environ Radioact; 2009 Sep; 100(9):690-6. PubMed ID: 19036483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting radiocaesium sorption characteristics with soil chemical properties for Japanese soils.
    Uematsu S; Smolders E; Sweeck L; Wannijn J; Van Hees M; Vandenhove H
    Sci Total Environ; 2015 Aug; 524-525():148-56. PubMed ID: 25897723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer parameter values in temperate forest ecosystems: a review.
    Calmon P; Thiry Y; Zibold G; Rantavaara A; Fesenko S
    J Environ Radioact; 2009 Sep; 100(9):757-66. PubMed ID: 19100665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The radiocaesium interception potential (RIP) at an agricultural site in Germany.
    Schimmack W; Auerswald K
    J Environ Radioact; 2004; 77(2):143-57. PubMed ID: 15312700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of Radiocaesium Interception Potential (RIP) on a worldwide scale to assess soil vulnerability to 137Cs contamination.
    Vandebroek L; Van Hees M; Delvaux B; Spaargaren O; Thiry Y
    J Environ Radioact; 2012 Feb; 104():87-93. PubMed ID: 21963466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems.
    Yoshida S; Muramatsu Y; Dvornik AM; Zhuchenko TA; Linkov I
    J Environ Radioact; 2004; 75(3):301-13. PubMed ID: 15193795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and uptake of 137Cs in relation to alkali metals in a perhumid montane forest ecosystem.
    Chao JH; Chiu CY; Lee HP
    Appl Radiat Isot; 2008 Oct; 66(10):1287-94. PubMed ID: 18417349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Method of assessment of 137Cs biological availability in forest soil].
    Konoplëva IV; Avila R; Bulgakov AA; Johanson K; Konoplëv AV; Popov VE
    Radiats Biol Radioecol; 2002; 42(2):204-10. PubMed ID: 12004620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of the soil-to-plant radiocaesium transfer factor for Japanese soils predicted with soil and plant properties.
    Uematsu S; Vandenhove H; Sweeck L; Van Hees M; Wannijn J; Smolders E
    J Environ Radioact; 2016 Mar; 153():51-60. PubMed ID: 26717351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating and reducing a model of radiocaesium soil-plant uptake.
    Tarsitano D; Young SD; Crout NM
    J Environ Radioact; 2011 Mar; 102(3):262-9. PubMed ID: 21232833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiocaesium accumulation in stemwood: integrated approach at the scale of forest stands for contaminated Scots pine in Belarus.
    Goor F; Thiry Y; Delvaux B
    J Environ Manage; 2007 Oct; 85(1):129-36. PubMed ID: 17029757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [An estimation of 137Cs accumulation in forest fungi by the soil properties].
    Bulgakov AA; Konoplev AV; Avila R
    Radiats Biol Radioecol; 2000; 40(4):462-4. PubMed ID: 11031497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of zeolite and vermiculite addition on exchangeable radiocaesium in soil with accelerated ageing.
    Yamaguchi N; Hikono A; Saito T
    J Environ Radioact; 2019 Jul; 203():18-24. PubMed ID: 30844680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of clay mineralogy on the mobility of radiocaesium in upland soils of NW Italy.
    Facchinelli A; Gallini L; Barberis E; Magnoni M; Hursthouse AS
    J Environ Radioact; 2001; 56(3):299-307. PubMed ID: 11468821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils.
    Chiu CY; Wang CJ; Huang CC
    J Environ Radioact; 2008 Jun; 99(6):882-9. PubMed ID: 18164109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the fungal mycelium in the retention of radiocaesium in forest soils.
    Vinichuk MM; Johanson KJ; Rosén K; Nilsson I
    J Environ Radioact; 2005; 78(1):77-92. PubMed ID: 15465181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.