These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 19168024)

  • 1. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data.
    Johnson KA; Simpson ZB; Blom T
    Anal Biochem; 2009 Apr; 387(1):30-41. PubMed ID: 19168024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data.
    Johnson KA; Simpson ZB; Blom T
    Anal Biochem; 2009 Apr; 387(1):20-9. PubMed ID: 19154726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting enzyme kinetic data with KinTek Global Kinetic Explorer.
    Johnson KA
    Methods Enzymol; 2009; 467():601-626. PubMed ID: 19897109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alanine racemase free energy profiles from global analyses of progress curves.
    Spies MA; Woodward JJ; Watnik MR; Toney MD
    J Am Chem Soc; 2004 Jun; 126(24):7464-75. PubMed ID: 15198593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.
    Marsh RE; Riauka TA; McQuarrie SA
    J Pharm Pharm Sci; 2007; 10(2):168-79. PubMed ID: 17706176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function.
    Goudar CT; Harris SK; McInerney MJ; Suflita JM
    J Microbiol Methods; 2004 Dec; 59(3):317-26. PubMed ID: 15488275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of heterologous interacting systems by sedimentation velocity: curve fitting algorithms for estimation of sedimentation coefficients, equilibrium and kinetic constants.
    Stafford WF; Sherwood PJ
    Biophys Chem; 2004 Mar; 108(1-3):231-43. PubMed ID: 15043932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinlsq: a program for fitting kinetics data with numerically integrated rate equations and its application to the analysis of slow, tight-binding inhibition data.
    Gutheil WG; Kettner CA; Bachovchin WW
    Anal Biochem; 1994 Nov; 223(1):13-20. PubMed ID: 7695087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum entropy, analysis of kinetic processes involving chemical and folding-unfolding changes in proteins.
    Plaza del Pino IM; Parody-Morreale A; Sanchez-Ruiz JM
    Anal Biochem; 1997 Jan; 244(2):239-55. PubMed ID: 9025940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic primary and secondary hydrogen kinetic isotope effects for alanine racemase from global analysis of progress curves.
    Spies MA; Toney MD
    J Am Chem Soc; 2007 Sep; 129(35):10678-85. PubMed ID: 17691728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data.
    Ahearn TS; Staff RT; Redpath TW; Semple SI
    Phys Med Biol; 2005 May; 50(9):N85-92. PubMed ID: 15843726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration.
    Morton TA; Myszka DG; Chaiken IM
    Anal Biochem; 1995 May; 227(1):176-85. PubMed ID: 7668379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithm for multi-curve-fitting with shared parameters and a possible application in evoked compound action potential measurements.
    Spitzer P; Zierhofer C; Hochmair E
    Biomed Eng Online; 2006 Feb; 5():13. PubMed ID: 16504064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CotQuest: improved algorithm and software for nonlinear regression analysis of DNA reassociation kinetics data.
    Bunge J; Chouvarine P; Peterson DG
    Anal Biochem; 2009 May; 388(2):322-30. PubMed ID: 19285476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model.
    Thompson PA; Eaton WA; Hofrichter J
    Biochemistry; 1997 Jul; 36(30):9200-10. PubMed ID: 9230053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of enzyme kinetic data from various sources.
    Borger S; Uhlendorf J; Helbig A; Liebermeister W
    In Silico Biol; 2007; 7(2 Suppl):S73-9. PubMed ID: 17822393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple computer program with statistical tests for the analysis of enzyme kinetics.
    Brooks SP
    Biotechniques; 1992 Dec; 13(6):906-11. PubMed ID: 1476744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of hammerhead ribozyme kinetic constants at high molar ratio ribozyme-substrate.
    Grassi G; Grassi M; Kuhn A; Kandolf R
    J Math Biol; 2002 Sep; 45(3):261-77. PubMed ID: 12373347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.