These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 19168124)
1. The in vitro effects of selenomethionine on methylmercury-induced neurotoxicity. Kaur P; Evje L; Aschner M; Syversen T Toxicol In Vitro; 2009 Apr; 23(3):378-85. PubMed ID: 19168124 [TBL] [Abstract][Full Text] [Related]
2. The in vitro effects of Trolox on methylmercury-induced neurotoxicity. Kaur P; Evje L; Aschner M; Syversen T Toxicology; 2010 Sep; 276(1):73-8. PubMed ID: 20637824 [TBL] [Abstract][Full Text] [Related]
3. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Kaur P; Aschner M; Syversen T Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475 [TBL] [Abstract][Full Text] [Related]
4. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity. Kaur P; Schulz K; Aschner M; Syversen T Toxicol Sci; 2007 Dec; 100(2):423-32. PubMed ID: 17728287 [TBL] [Abstract][Full Text] [Related]
5. The use of fluorescence for detecting MeHg-induced ROS in cell cultures. Kaur P; Schulz K; Heggland I; Aschner M; Syversen T Toxicol In Vitro; 2008 Aug; 22(5):1392-8. PubMed ID: 18343630 [TBL] [Abstract][Full Text] [Related]
6. Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. dos Santos AP; Mateus ML; Carvalho CM; Batoréu MC Toxicol Lett; 2007 Mar; 169(2):121-8. PubMed ID: 17267146 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanisms involved in the protective effect of selenocystine against methylmercury-induced cell death in human HepG2 cells. Cordero-Herrera I; Cuello S; Goya L; Madrid Y; Bravo L; Cámara C; Ramos S Food Chem Toxicol; 2013 Sep; 59():554-63. PubMed ID: 23838314 [TBL] [Abstract][Full Text] [Related]
8. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Kaur P; Aschner M; Syversen T Neurotoxicology; 2006 Jul; 27(4):492-500. PubMed ID: 16513172 [TBL] [Abstract][Full Text] [Related]
9. Docosahexaenoic acid may act as a neuroprotector for methylmercury-induced neurotoxicity in primary neural cell cultures. Kaur P; Heggland I; Aschner M; Syversen T Neurotoxicology; 2008 Nov; 29(6):978-87. PubMed ID: 18619488 [TBL] [Abstract][Full Text] [Related]
10. Methylmercury activates ASK1/JNK signaling pathways, leading to apoptosis due to both mitochondria- and endoplasmic reticulum (ER)-generated processes in myogenic cell lines. Usuki F; Fujita E; Sasagawa N Neurotoxicology; 2008 Jan; 29(1):22-30. PubMed ID: 17920127 [TBL] [Abstract][Full Text] [Related]
11. Uptake and efflux of methylmercury in vitro: comparison of transport mechanisms in C6, B35 and RBE4 cells. Heggland I; Kaur P; Syversen T Toxicol In Vitro; 2009 Sep; 23(6):1020-7. PubMed ID: 19540910 [TBL] [Abstract][Full Text] [Related]
12. The role of intracellular glutathione in methylmercury-induced toxicity in embryonic neuronal cells. Ou YC; White CC; Krejsa CM; Ponce RA; Kavanagh TJ; Faustman EM Neurotoxicology; 1999 Oct; 20(5):793-804. PubMed ID: 10591515 [TBL] [Abstract][Full Text] [Related]
13. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury. Bellum S; Bawa B; Thuett KA; Stoica G; Abbott LC Int J Toxicol; 2007; 26(3):261-9. PubMed ID: 17564908 [TBL] [Abstract][Full Text] [Related]
14. Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Franco JL; Posser T; Dunkley PR; Dickson PW; Mattos JJ; Martins R; Bainy AC; Marques MR; Dafre AL; Farina M Free Radic Biol Med; 2009 Aug; 47(4):449-57. PubMed ID: 19450679 [TBL] [Abstract][Full Text] [Related]
15. Antagonistic interaction of selenomethionine enantiomers on methylmercury toxicity in the microalgae Chlorella sorokiniana. Moreno F; García-Barrera T; Gómez-Jacinto V; Gómez-Ariza JL; Garbayo-Nores I; Vílchez-Lobato C Metallomics; 2014 Feb; 6(2):347-55. PubMed ID: 24445426 [TBL] [Abstract][Full Text] [Related]
16. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum. Sakamoto M; Yasutake A; Kakita A; Ryufuku M; Chan HM; Yamamoto M; Oumi S; Kobayashi S; Watanabe C Environ Sci Technol; 2013 Mar; 47(6):2862-8. PubMed ID: 23398308 [TBL] [Abstract][Full Text] [Related]
17. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Shanker G; Aschner JL; Syversen T; Aschner M Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Mori N; Yasutake A; Hirayama K Arch Toxicol; 2007 Nov; 81(11):769-76. PubMed ID: 17464500 [TBL] [Abstract][Full Text] [Related]
19. Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices. Wagner C; Vargas AP; Roos DH; Morel AF; Farina M; Nogueira CW; Aschner M; Rocha JB Arch Toxicol; 2010 Feb; 84(2):89-97. PubMed ID: 19902180 [TBL] [Abstract][Full Text] [Related]
20. Methylmercury Induced Neurotoxicity and the Influence of Selenium in the Brains of Adult Zebrafish (Danio rerio). Rasinger JD; Lundebye AK; Penglase SJ; Ellingsen S; Amlund H Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28353644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]