BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 19168265)

  • 1. Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater.
    Anirudhan TS; Radhakrishnan PG
    J Environ Radioact; 2009 Mar; 100(3):250-7. PubMed ID: 19168265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.
    Anirudhan TS; Divya L; Suchithra PS
    J Environ Manage; 2009 Jan; 90(1):549-60. PubMed ID: 18222595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media.
    Anirudhan TS; Rijith S
    J Environ Radioact; 2012 Apr; 106():8-19. PubMed ID: 22304995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue.
    Anirudhan TS; Radhakrishnan PG
    J Colloid Interface Sci; 2007 Dec; 316(2):268-76. PubMed ID: 17905262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption characteristics of cadmium(II) onto functionalized poly(hydroxyethylmethacrylate)-grafted coconut coir pith.
    Anirudhan TS; Divya L; Rijith S
    Bull Environ Contam Toxicol; 2010 Jul; 85(1):42-7. PubMed ID: 20449725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus-modified poly(styrene-co-divinylbenzene)-PAMAM chelating resin for the adsorption of uranium(VI) in aqueous.
    Cao Q; Liu Y; Wang C; Cheng J
    J Hazard Mater; 2013 Dec; 263 Pt 2():311-21. PubMed ID: 23790513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay.
    Anirudhan TS; Bringle CD; Rijith S
    J Environ Radioact; 2010 Mar; 101(3):267-76. PubMed ID: 20045229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies.
    Gupta S; Babu BV
    J Environ Manage; 2009 Jul; 90(10):3013-22. PubMed ID: 19473746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of anionic species on uranium separation from acid mine water using strong base resins.
    Ladeira AC; Gonçalves CR
    J Hazard Mater; 2007 Sep; 148(3):499-504. PubMed ID: 17420092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
    Parab H; Joshi S; Shenoy N; Verma R; Lali A; Sudersanan M
    Bioresour Technol; 2005 Jul; 96(11):1241-8. PubMed ID: 15734311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide.
    Wazne M; Meng X; Korfiatis GP; Christodoulatos C
    J Hazard Mater; 2006 Aug; 136(1):47-52. PubMed ID: 16352391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene.
    Ilaiyaraja P; Deb AK; Sivasubramanian K; Ponraju D; Venkatraman B
    J Hazard Mater; 2013 Apr; 250-251():155-66. PubMed ID: 23435203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U(VI) adsorption on aquifer sediments at the Hanford Site.
    Um W; Serne RJ; Brown CF; Last GV
    J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration.
    Camacho LM; Deng S; Parra RR
    J Hazard Mater; 2010 Mar; 175(1-3):393-8. PubMed ID: 19892465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan.
    Wang G; Liu J; Wang X; Xie Z; Deng N
    J Hazard Mater; 2009 Sep; 168(2-3):1053-8. PubMed ID: 19342166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The separation of uranium ions by natural and modified diatomite from aqueous solution.
    Sprynskyy M; Kovalchuk I; Buszewski B
    J Hazard Mater; 2010 Sep; 181(1-3):700-7. PubMed ID: 20542374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.
    Fan FL; Qin Z; Bai J; Rong WD; Fan FY; Tian W; Wu XL; Wang Y; Zhao L
    J Environ Radioact; 2012 Apr; 106():40-6. PubMed ID: 22304999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5.
    Tian G; Geng J; Jin Y; Wang C; Li S; Chen Z; Wang H; Zhao Y; Li S
    J Hazard Mater; 2011 Jun; 190(1-3):442-50. PubMed ID: 21497013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption profile and chromatographic separation of uranium (VI) ions from aqueous solutions onto date pits solid sorbent.
    Saad EM; Mansour RA; El-Asmy A; El-Shahawi MS
    Talanta; 2008 Sep; 76(5):1041-6. PubMed ID: 18761152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonated cross-linked polyethylenimine for selective removal of uranium ions from aqueous solutions.
    Saad DM; Cukrowska EM; Tutu H
    Water Sci Technol; 2012; 66(1):122-9. PubMed ID: 22678208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.