BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19168336)

  • 1. Mechanical property analysis of stored red blood cell using optical tweezers.
    Li Y; Wen C; Xie H; Ye A; Yin Y
    Colloids Surf B Biointerfaces; 2009 May; 70(2):169-73. PubMed ID: 19168336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers.
    Wu J; Li Y; Lu D; Liu Z; Cheng Z; He L
    Cryo Letters; 2009; 30(2):89-95. PubMed ID: 19448857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers.
    Mills JP; Qie L; Dao M; Lim CT; Suresh S
    Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired red cell deformability in iron deficient subjects.
    Brandão MM; Castro Mde L; Fontes A; Cesar CL; Costa FF; Saad ST
    Clin Hemorheol Microcirc; 2009; 43(3):217-21. PubMed ID: 19847056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell-deformability measurement: review of techniques.
    Musielak M
    Clin Hemorheol Microcirc; 2009; 42(1):47-64. PubMed ID: 19363240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nonlinear mechanical response of the red blood cell.
    Yoon YZ; Kotar J; Yoon G; Cicuta P
    Phys Biol; 2008 Aug; 5(3):036007. PubMed ID: 18698116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the deformability of human red blood cells stored in different preservative solutions.
    Kucera W; Wegner G; Lerche D
    Biomed Biochim Acta; 1985; 44(10):1459-67. PubMed ID: 4084251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endotoxin binding to erythrocyte membrane and erythrocyte deformability in human sepsis and in vitro.
    Pöschl JM; Leray C; Ruef P; Cazenave JP; Linderkamp O
    Crit Care Med; 2003 Mar; 31(3):924-8. PubMed ID: 12627006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations between the experimental and numerical investigations on the mechanical properties of erythrocyte by laser stretching.
    Li C; Liu YP; Liu KK; Lai AK
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):80-90. PubMed ID: 18334458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous calibration of optical tweezers spring constant and position detector response.
    Le Gall A; Perronet K; Dulin D; Villing A; Bouyer P; Visscher K; Westbrook N
    Opt Express; 2010 Dec; 18(25):26469-74. PubMed ID: 21164997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy requirements of erythrocytes under mechanical stress.
    Kodícek M; Mircevová L; Marík T
    Biomed Biochim Acta; 1987; 46(2-3):S103-7. PubMed ID: 3593290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.