These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 19168384)
1. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Cunnac S; Lindeberg M; Collmer A Curr Opin Microbiol; 2009 Feb; 12(1):53-60. PubMed ID: 19168384 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant. Zumaquero A; Macho AP; Rufián JS; Beuzón CR J Bacteriol; 2010 Sep; 192(17):4474-88. PubMed ID: 20601478 [TBL] [Abstract][Full Text] [Related]
3. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. Wei HL; Collmer A Mol Plant Pathol; 2018 Jul; 19(7):1779-1794. PubMed ID: 29277959 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants. Castillo-Lizardo MG; Aragón IM; Carvajal V; Matas IM; Pérez-Bueno ML; Gallegos MT; Barón M; Ramos C BMC Microbiol; 2015 Aug; 15():165. PubMed ID: 26285820 [TBL] [Abstract][Full Text] [Related]
5. Pseudomonas syringae HrpP Is a type III secretion substrate specificity switch domain protein that is translocated into plant cells but functions atypically for a substrate-switching protein. Morello JE; Collmer A J Bacteriol; 2009 May; 191(9):3120-31. PubMed ID: 19270091 [TBL] [Abstract][Full Text] [Related]
6. A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Badel JL; Shimizu R; Oh HS; Collmer A Mol Plant Microbe Interact; 2006 Feb; 19(2):99-111. PubMed ID: 16529372 [TBL] [Abstract][Full Text] [Related]
7. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases. Shindo T; Kaschani F; Yang F; Kovács J; Tian F; Kourelis J; Hong TN; Colby T; Shabab M; Chawla R; Kumari S; Ilyas M; Hörger AC; Alfano JR; van der Hoorn RA PLoS Pathog; 2016 Sep; 12(9):e1005874. PubMed ID: 27603016 [TBL] [Abstract][Full Text] [Related]
8. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Wei CF; Kvitko BH; Shimizu R; Crabill E; Alfano JR; Lin NC; Martin GB; Huang HC; Collmer A Plant J; 2007 Jul; 51(1):32-46. PubMed ID: 17559511 [TBL] [Abstract][Full Text] [Related]
9. Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Schechter LM; Vencato M; Jordan KL; Schneider SE; Schneider DJ; Collmer A Mol Plant Microbe Interact; 2006 Nov; 19(11):1180-92. PubMed ID: 17073301 [TBL] [Abstract][Full Text] [Related]
10. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000. Markel E; Stodghill P; Bao Z; Myers CR; Swingle B J Bacteriol; 2016 Sep; 198(17):2330-44. PubMed ID: 27325679 [TBL] [Abstract][Full Text] [Related]
11. Genetic analysis of the individual contribution to virulence of the type III effector inventory of Pseudomonas syringae pv. phaseolicola. Macho AP; Zumaquero A; Gonzalez-Plaza JJ; Ortiz-Martín I; Rufián JS; Beuzón CR PLoS One; 2012; 7(4):e35871. PubMed ID: 22558247 [TBL] [Abstract][Full Text] [Related]
12. The Stringent Response Mediated by (p)ppGpp Is Required for Virulence of Pseudomonas syringae pv. tomato and Its Survival on Tomato. Chatnaparat T; Li Z; Korban SS; Zhao Y Mol Plant Microbe Interact; 2015 Jul; 28(7):776-89. PubMed ID: 25675257 [TBL] [Abstract][Full Text] [Related]
14. Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants. Aung K; Xin X; Mecey C; He SY Methods Mol Biol; 2017; 1531():141-153. PubMed ID: 27837488 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Lindeberg M; Cunnac S; Collmer A Trends Microbiol; 2012 Apr; 20(4):199-208. PubMed ID: 22341410 [TBL] [Abstract][Full Text] [Related]
17. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. Oh HS; Kvitko BH; Morello JE; Collmer A J Bacteriol; 2007 Nov; 189(22):8277-89. PubMed ID: 17827286 [TBL] [Abstract][Full Text] [Related]
18. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities. Lin NC; Abramovitch RB; Kim YJ; Martin GB Appl Environ Microbiol; 2006 Jan; 72(1):702-12. PubMed ID: 16391110 [TBL] [Abstract][Full Text] [Related]
19. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Block A; Guo M; Li G; Elowsky C; Clemente TE; Alfano JR Cell Microbiol; 2010 Mar; 12(3):318-30. PubMed ID: 19863557 [TBL] [Abstract][Full Text] [Related]
20. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato. Lin NC; Martin GB Mol Plant Microbe Interact; 2007 Jul; 20(7):806-15. PubMed ID: 17601168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]