These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 19168808)

  • 21. Differences in friction and torsional resistance in athletic shoe-turf surface interfaces.
    Heidt RS; Dormer SG; Cawley PW; Scranton PE; Losse G; Howard M
    Am J Sports Med; 1996; 24(6):834-42. PubMed ID: 8947408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Athletic Shoe in Football.
    Jastifer J; Kent R; Crandall J; Sherwood C; Lessley D; McCullough KA; Coughlin MJ; Anderson RB
    Sports Health; 2017; 9(2):126-131. PubMed ID: 28151702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mechanical interactions between an American football cleat and playing surfaces in-situ at loads and rates generated by elite athletes: a comparison of playing surfaces.
    Kent R; Forman JL; Crandall J; Lessley D
    Sports Biomech; 2015 Mar; 14(1):1-17. PubMed ID: 25900121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of in-shoe foot loading patterns on natural grass and synthetic turf.
    Ford KR; Manson NA; Evans BJ; Myer GD; Gwin RC; Heidt RS; Hewett TE
    J Sci Med Sport; 2006 Dec; 9(6):433-40. PubMed ID: 16672191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Higher shoe-surface interaction is associated with doubling of lower extremity injury risk in football codes: a systematic review and meta-analysis.
    Thomson A; Whiteley R; Bleakley C
    Br J Sports Med; 2015 Oct; 49(19):1245-52. PubMed ID: 26036677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects on traction of outsole composition and hardnesses of basketball shoes and three types of playing surfaces.
    Rheinstein DJ; Morehouse CA; Niebel BW
    Med Sci Sports; 1978; 10(4):282-8. PubMed ID: 750848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Playing field issues in sports medicine.
    Wright JM; Webner D
    Curr Sports Med Rep; 2010; 9(3):129-33. PubMed ID: 20463494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of football injuries on third and fourth generation artificial turfs compared with natural turf.
    Williams S; Hume PA; Kara S
    Sports Med; 2011 Nov; 41(11):903-23. PubMed ID: 21985213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incidence, mechanisms, and severity of game-related college football injuries on FieldTurf versus natural grass: a 3-year prospective study.
    Meyers MC
    Am J Sports Med; 2010 Apr; 38(4):687-97. PubMed ID: 20075177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data.
    Wei F; Braman JE; Weaver BT; Haut RC
    J Biomech; 2011 Oct; 44(15):2636-41. PubMed ID: 21889148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of turf and cleat footwear on plantar load distributions in adolescent American football players during resisted pushing.
    Taylor JB; Nguyen AD; Griffin JR; Ford KR
    Sports Biomech; 2018 Jun; 17(2):227-237. PubMed ID: 28632050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of soccer shoe design on player performance and injuries.
    Hennig EM
    Res Sports Med; 2011; 19(3):186-201. PubMed ID: 21722006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review of selected noncontact anterior cruciate ligament injuries in the National Football League.
    Scranton PE; Whitesel JP; Powell JW; Dormer SG; Heidt RS; Losse G; Cawley PW
    Foot Ankle Int; 1997 Dec; 18(12):772-6. PubMed ID: 9429878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic playing surfaces and athlete health.
    Drakos MC; Taylor SA; Fabricant PD; Haleem AM
    J Am Acad Orthop Surg; 2013 May; 21(5):293-302. PubMed ID: 23637148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of the composition of artificial turf on rotational traction and athlete biomechanics.
    Wannop JW; Foreman T; Madden R; Stefanyshyn D
    J Sports Sci; 2019 Aug; 37(16):1849-1856. PubMed ID: 30922172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Harmful cleats of football boots: a biomechanical evaluation.
    Bentley JA; Ramanathan AK; Arnold GP; Wang W; Abboud RJ
    Foot Ankle Surg; 2011 Sep; 17(3):140-4. PubMed ID: 21783074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amateur football pitches: mechanical properties of the natural ground and of different artificial turf infills and their biomechanical implications.
    Zanetti EM; Bignardi C; Franceschini G; Audenino AL
    J Sports Sci; 2013; 31(7):767-78. PubMed ID: 23230960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low handicap golfers generate more torque at the shoe-natural grass interface when using a driver.
    Worsfold P; Smith NA; Dyson RJ
    J Sports Sci Med; 2008; 7(3):408-14. PubMed ID: 24149910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concussion in professional football: biomechanics of the struck player--part 14.
    Viano DC; Casson IR; Pellman EJ
    Neurosurgery; 2007 Aug; 61(2):313-27; discussion 327-8. PubMed ID: 17762744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The functional sport shoe parameter "torsion" within running shoe research--a literature review].
    Michel FI; Kälin X; Metzger A; Westphal K; Schweizer F; Campe S; Segesser B
    Sportverletz Sportschaden; 2009 Dec; 23(4):197-205. PubMed ID: 20108183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.