BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 19168905)

  • 1. Heterogeneous distribution of axonal cytoskeleton proteins in the human optic nerve.
    Balaratnasingam C; Morgan WH; Johnstone V; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2824-38. PubMed ID: 19168905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sectoral variations in the distribution of axonal cytoskeleton proteins in the human optic nerve head.
    Kang MH; Law-Davis S; Balaratnasingam C; Yu DY
    Exp Eye Res; 2014 Nov; 128():141-50. PubMed ID: 25304220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal transport and cytoskeletal changes in the laminar regions after elevated intraocular pressure.
    Balaratnasingam C; Morgan WH; Bass L; Matich G; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3632-44. PubMed ID: 17652733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins.
    Balaratnasingam C; Morgan WH; Bass L; Kang M; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3019-28. PubMed ID: 20089877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent effects of elevated intraocular pressure on optic nerve head axonal transport and cytoskeleton proteins.
    Balaratnasingam C; Morgan WH; Bass L; Cringle SJ; Yu DY
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):986-99. PubMed ID: 18326722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y; Szaro BG
    J Comp Neurol; 1994 May; 343(1):158-72. PubMed ID: 7517961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural changes and immunocytochemical localization of microtubule-associated protein 1 in guinea pig optic nerves after acute increase in intraocular pressure.
    Ou B; Ohno S; Tsukahara S
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):963-71. PubMed ID: 9579475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions.
    Balaratnasingam C; Kang MH; Yu P; Chan G; Morgan WH; Cringle SJ; Yu DY
    Exp Eye Res; 2014 Apr; 121():11-22. PubMed ID: 24560677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in slow transport kinetics induced by estramustine phosphate, an agent binding to microtubule-associated proteins.
    Sahenk Z; Mendell JR
    J Neurosci Res; 1992 Aug; 32(4):481-93. PubMed ID: 1382136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic neuropathies--importance of spatial distribution of mitochondria as well as function.
    Yu Wai Man CY; Chinnery PF; Griffiths PG
    Med Hypotheses; 2005; 65(6):1038-42. PubMed ID: 16098682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of immunoreactivity for cytoskeletal (microtubule, microtubule-associated, and neurofilament) proteins in adult human dorsal root ganglia.
    Naves FJ; Huerta JJ; Garcia-Suarez O; Urdangaray N; Esteban I; Del Valle ME; Vega JA
    Anat Rec; 1996 Feb; 244(2):246-56. PubMed ID: 8808399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connective tissue structure of the tree shrew optic nerve and associated ageing changes.
    Albon J; Farrant S; Akhtar S; Young R; Boulton ME; Smith G; Taylor M; Guggenheim J; Morgan JE
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2134-44. PubMed ID: 17460272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro.
    Leterrier JF; Rusakov DA; Nelson BD; Linden M
    Microsc Res Tech; 1994 Feb; 27(3):233-61. PubMed ID: 8204913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axotomy-induced cytoskeleton changes in unmyelinated mammalian central nervous system axons.
    Balaratnasingam C; Morgan WH; Bass L; Kang M; Cringle SJ; Yu DY
    Neuroscience; 2011 Mar; 177():269-82. PubMed ID: 21215300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in heavy and light neurofilament proteins in hippocampus following chronic ECS administration.
    Vaidya VA; Terwilliger RZ; Duman RS
    Synapse; 2000 Feb; 35(2):137-43. PubMed ID: 10611639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion of axonal cytoskeleton: an early sign of glaucomatous damage.
    Huang X; Kong W; Zhou Y; Gregori G
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):2879-88. PubMed ID: 21245391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic regulation of middle neurofilament RNA pools during optic nerve regeneration.
    Ananthakrishnan L; Gervasi C; Szaro BG
    Neuroscience; 2008 Apr; 153(1):144-53. PubMed ID: 18358619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons.
    Nixon RA; Brown BA; Marotta CA
    J Cell Biol; 1982 Jul; 94(1):150-8. PubMed ID: 6181078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the three neurofilament subunits within pig and human retinal ganglion cells.
    Ruiz-Ederra J; GarcĂ­a M; Hicks D; Vecino E
    Mol Vis; 2004 Feb; 10():83-92. PubMed ID: 14961007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial cytochrome c oxidase expression in the central nervous system is elevated at sites of pressure gradient elevation but not absolute pressure increase.
    Balaratnasingam C; Pham D; Morgan WH; Bass L; Cringle SJ; Yu DY
    J Neurosci Res; 2009 Oct; 87(13):2973-82. PubMed ID: 19437548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.