BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19169144)

  • 1. Biomimetic MRI contrast agent for imaging of inflammation in atherosclerotic plaque of ApoE-/- mice: a pilot study.
    Alsaid H; De Souza G; Bourdillon MC; Chaubet F; Sulaiman A; Desbleds-Mansard C; Chaabane L; Zahir C; Lancelot E; Rousseaux O; Corot C; Douek P; Briguet A; Letourneur D; Canet-Soulas E
    Invest Radiol; 2009 Mar; 44(3):151-8. PubMed ID: 19169144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Value of in vivo monitoring of abdominal aortic atherosclerosis by high field magnetic resonance imaging in apoE-/- mice fed a high fat diet or infused with angiotensin II].
    ZHAO R; YAO YY; DENG G; JU SH; WANG ZJ; WEN S; CHEN J; JIN H
    Zhonghua Xin Xue Guan Bing Za Zhi; 2010 Sep; 38(9):823-8. PubMed ID: 21092653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.
    Yasuda S; Ikuta K; Uwatoku T; Oi K; Abe K; Hyodo F; Yoshimitsu K; Sugimura K; Utsumi H; Katayama Y; Shimokawa H
    J Vasc Res; 2008; 45(2):123-8. PubMed ID: 17940339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.
    Burtea C; Laurent S; Murariu O; Rattat D; Toubeau G; Verbruggen A; Vansthertem D; Vander Elst L; Muller RN
    Cardiovasc Res; 2008 Apr; 78(1):148-57. PubMed ID: 18174291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques.
    Burtea C; Laurent S; Lancelot E; Ballet S; Murariu O; Rousseaux O; Port M; Vander Elst L; Corot C; Muller RN
    Mol Pharm; 2009; 6(6):1903-19. PubMed ID: 19743879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model.
    Fries P; Runge VM; Bücker A; Schürholz H; Reith W; Robert P; Jackson C; Lanz T; Schneider G
    Invest Radiol; 2009 Apr; 44(4):200-6. PubMed ID: 19300099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo MR imaging of bone marrow cells trafficking to atherosclerotic plaques.
    Qiu B; Gao F; Walczak P; Zhang J; Kar S; Bulte JW; Yang X
    J Magn Reson Imaging; 2007 Aug; 26(2):339-43. PubMed ID: 17623878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo.
    te Boekhorst BC; Bovens SM; van de Kolk CW; Cramer MJ; Doevendans PA; ten Hove M; van der Weerd L; Poelmann R; Strijkers GJ; Pasterkamp G; van Echteld CJ
    NMR Biomed; 2010 Oct; 23(8):939-51. PubMed ID: 20878972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution magnetic resonance imaging at 2 Tesla: potential for atherosclerotic lesions exploration in the apolipoprotein E knockout mouse.
    Chaabane L; Soulas EC; Contard F; Salah A; Guerrier D; Briguet A; Douek P
    Invest Radiol; 2003 Aug; 38(8):532-8. PubMed ID: 12874520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice.
    Merhi-Soussi F; Kwak BR; Magne D; Chadjichristos C; Berti M; Pelli G; James RW; Mach F; Gabay C
    Cardiovasc Res; 2005 Jun; 66(3):583-93. PubMed ID: 15914123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis.
    Nahrendorf M; Jaffer FA; Kelly KA; Sosnovik DE; Aikawa E; Libby P; Weissleder R
    Circulation; 2006 Oct; 114(14):1504-11. PubMed ID: 17000904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach.
    Lancelot E; Amirbekian V; Brigger I; Raynaud JS; Ballet S; David C; Rousseaux O; Le Greneur S; Port M; Lijnen HR; Bruneval P; Michel JB; Ouimet T; Roques B; Amirbekian S; Hyafil F; Vucic E; Aguinaldo JG; Corot C; Fayad ZA
    Arterioscler Thromb Vasc Biol; 2008 Mar; 28(3):425-32. PubMed ID: 18258820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted contrast agent helps to monitor advanced plaque during progression: a magnetic resonance imaging study in rabbits.
    Zheng J; Ochoa E; Misselwitz B; Yang D; El Naqa I; Woodard PK; Abendschein D
    Invest Radiol; 2008 Jan; 43(1):49-55. PubMed ID: 18097277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodelling of the zero-stress state and residual strains in apoE-deficient mouse aorta.
    Gregersen H; Zhao J; Lu X; Zhou J; Falk E
    Biorheology; 2007; 44(2):75-89. PubMed ID: 17538200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of receptor for advanced glycation end products-directed imaging of atherosclerotic plaque in a murine model of spontaneous atherosclerosis.
    Tekabe Y; Li Q; Rosario R; Sedlar M; Majewski S; Hudson BI; Einstein AJ; Schmidt AM; Johnson LL
    Circ Cardiovasc Imaging; 2008 Nov; 1(3):212-9. PubMed ID: 19808545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serial studies of mouse atherosclerosis by in vivo magnetic resonance imaging detect lesion regression after correction of dyslipidemia.
    Trogan E; Fayad ZA; Itskovich VV; Aguinaldo JG; Mani V; Fallon JT; Chereshnev I; Fisher EA
    Arterioscler Thromb Vasc Biol; 2004 Sep; 24(9):1714-9. PubMed ID: 15256400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution three-dimensional aortic magnetic resonance angiography and quantitative vessel wall characterization of different atherosclerotic stages in a rabbit model.
    Steen H; Lima JA; Chatterjee S; Kolmakova A; Gao F; Rodriguez ER; Stuber M
    Invest Radiol; 2007 Sep; 42(9):614-21. PubMed ID: 17700276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse.
    Mulder WJ; Douma K; Koning GA; van Zandvoort MA; Lutgens E; Daemen MJ; Nicolay K; Strijkers GJ
    Magn Reson Med; 2006 May; 55(5):1170-4. PubMed ID: 16598732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a model of neurodegeneration: a 5-week longitudinal micro-MRI study.
    McDaniel B; Sheng H; Warner DS; Hedlund LW; Benveniste H
    Neuroimage; 2001 Dec; 14(6):1244-55. PubMed ID: 11707081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.