These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19169373)

  • 1. Anion Transport in Liposomes Responds to Variations in the Anchor Chains and the Fourth Amino Acid of Heptapeptide Ion Channels.
    Ferdani R; Pajewski R; Djedovič N; Pajewska J; Schlesinger PH; Gokel GW
    New J Chem; 2005; 29():673-280. PubMed ID: 19169373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of chloride and carboxyfluorescein through phospholipid vesicle membranes by heptapeptide amphiphiles.
    Ferdani R; Li R; Pajewski R; Pajewska J; Winter RK; Gokel GW
    Org Biomol Chem; 2007 Aug; 5(15):2423-32. PubMed ID: 17637962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C- and N-Terminal Residues of Synthetic Heptapeptide Ion Channels Influence Transport Efficacy Through Phospholipid Bilayers.
    Djedovič N; Ferdani R; Harder E; Pajewska J; Pajewski R; Weber ME; Schlesinger PH; Gokel GW
    New J Chem; 2005 Jan; 29(2):291-305. PubMed ID: 19633728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal ester of membrane anchored peptide ion channels affects anion transport.
    Djedovic N; Ferdani R; Harder E; Pajewska J; Pajewski R; Schlesinger PH; Gokel GW
    Chem Commun (Camb); 2003 Dec; (23):2862-3. PubMed ID: 14680212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic, biologically active amphiphilic peptides.
    Yamnitz CR; Gokel GW
    Chem Biodivers; 2007 Jun; 4(6):1395-412. PubMed ID: 17589872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for dimer formation by an amphiphilic heptapeptide that mediates chloride and carboxyfluorescein release from liposomes.
    Pajewski R; Ferdani R; Pajewska J; Djedovic N; Schlesinger PH; Gokel GW
    Org Biomol Chem; 2005 Feb; 3(4):619-25. PubMed ID: 15703797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrocarbon anchored peptide that forms a chloride-selective channel in liposomes.
    Schlesinger PH; Ferdani R; Pajewski R; Pajewska J; Gokel GW
    Chem Commun (Camb); 2002 Apr; (8):840-1. PubMed ID: 12123005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylate anion diminishes chloride transport through a synthetic, self-assembled transmembrane pore.
    You L; Ferdani R; Li R; Kramer JP; Winter RE; Gokel GW
    Chemistry; 2008; 14(1):382-96. PubMed ID: 17924596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion transport properties of amine and amide-sidechained peptides are affected by charge and phospholipid composition.
    You L; Li R; Gokel GW
    Org Biomol Chem; 2008 Aug; 6(16):2914-23. PubMed ID: 18688484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR structure and dynamic studies of an anion-binding, channel-forming heptapeptide.
    Cook GA; Pajewski R; Aburi M; Smith PE; Prakash O; Tomich JM; Gokel GW
    J Am Chem Soc; 2006 Feb; 128(5):1633-8. PubMed ID: 16448136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid.
    Harrison AG
    J Mass Spectrom; 2003 Feb; 38(2):174-87. PubMed ID: 12577284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic ion channels: from pores to biological applications.
    Gokel GW; Negin S
    Acc Chem Res; 2013 Dec; 46(12):2824-33. PubMed ID: 23738778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar bilayer studies reveal multiple conductance states for synthetic anion transporters.
    Ferdani R; Gokel GW
    Org Biomol Chem; 2006 Oct; 4(20):3746-50. PubMed ID: 17024277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride ion efflux from liposomes is controlled by sidechains in a channel-forming heptapeptide.
    You L; Ferdani R; Gokel GW
    Chem Commun (Camb); 2006 Feb; (6):603-5. PubMed ID: 16446823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and peptide bond orientation in tetrapeptides containing L-azetidine-2-carboxylic acid and L-proline.
    Tsai FH; Overberger CG; Zand R
    Biopolymers; 1990; 30(11-12):1039-49. PubMed ID: 2081265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of L-azetidine-2-carboxylic acid into hemoglobin in rabbit reticulocytes in vitro.
    Baum BJ; Johnson LS; Franzblau C; Troxler RF
    J Biol Chem; 1975 Feb; 250(4):1464-71. PubMed ID: 1112811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of peptide amides by Fmoc-solid-phase peptide synthesis and acid labile anchor groups.
    Stüber W; Knolle J; Breipohl G
    Int J Pept Protein Res; 1989 Sep; 34(3):215-21. PubMed ID: 2599759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant differences in the degradation of pro-leu-gly-nH2 by human serum and that of other species (38484).
    Walter R; Neidle A; Marks N
    Proc Soc Exp Biol Med; 1975 Jan; 148(1):98-103. PubMed ID: 1168915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the primary structure of bovine high-molecular-weight kininogen. Amino acid sequence of a fragment ("histidine-rich peptide") released by plasma kallikrein.
    Han YN; Komiya M; Iwanaga S; Suzuki T
    J Biochem; 1975 Jan; 77(1?):55-68. PubMed ID: 1169237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.