These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 19169738)
41. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Hatano A; Shoji R Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895 [TBL] [Abstract][Full Text] [Related]
42. Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Ferreira da Silva E; Almeida SF; Nunes ML; Luís AT; Borg F; Hedlund M; de Sá CM; Patinha C; Teixeira P Sci Total Environ; 2009 Oct; 407(21):5620-36. PubMed ID: 19647289 [TBL] [Abstract][Full Text] [Related]
43. Speciation as a screening tool for the determination of heavy metal surface water pollution in the Guadiamar river basin. Alonso E; Santos A; Callejón M; Jiménez JC Chemosphere; 2004 Aug; 56(6):561-70. PubMed ID: 15212899 [TBL] [Abstract][Full Text] [Related]
44. Toxicity of metal-ethylenediaminetetraacetic acid solution as a function of chemical speciation: an approach for toxicity assessment. Peraferrer C; Martínez M; Poch J; Villaescusa I Arch Environ Contam Toxicol; 2012 Nov; 63(4):484-94. PubMed ID: 22864588 [TBL] [Abstract][Full Text] [Related]
45. Simulating a heavy metal spill under estuarine conditions: effects on the clam Scrobicularia plana. García-Luque E; DelValls TA; Casado-Martínez C; Forja JM; Gómez-Parra A Mar Environ Res; 2004; 58(2-5):671-4. PubMed ID: 15178097 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of effectiveness of EDTA and sodium thiosulfate in removing metal toxicity toward sea urchin embryo-larval applying the TIE. Resgalla C; Poleza F; Souza RC; Máximo MV; Radetski CM Chemosphere; 2012 Sep; 89(1):102-7. PubMed ID: 22627151 [TBL] [Abstract][Full Text] [Related]
47. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds. Gosavi K; Sammut J; Gifford S; Jankowski J Sci Total Environ; 2004 May; 324(1-3):25-39. PubMed ID: 15081694 [TBL] [Abstract][Full Text] [Related]
48. Field validation of autometallographical black silver deposit (BSD) extent in three bivalve species from the Lagoon of Venice, Italy (Mytilus galloprovincialis, Tapes philippinarum, Scapharca inaequivalvis) for metal bioavailability assessment. Marin MG; Boscolo R; Cella A; Degetto S; Da Ros L Sci Total Environ; 2006 Dec; 371(1-3):156-67. PubMed ID: 17052744 [TBL] [Abstract][Full Text] [Related]
49. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments. Kaushik A; Kansal A; Santosh ; Meena ; Kumari S; Kaushik CP J Hazard Mater; 2009 May; 164(1):265-70. PubMed ID: 18809251 [TBL] [Abstract][Full Text] [Related]
50. Biomarkers of heavy metal contamination in the red fingered marsh crab, Parasesarma erythodactyla. MacFarlane GR; Schreider M; McLennan B Arch Environ Contam Toxicol; 2006 Nov; 51(4):584-93. PubMed ID: 16988868 [TBL] [Abstract][Full Text] [Related]
51. Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters. Luoma SN; Cain DJ; Rainbow PS Integr Environ Assess Manag; 2010 Apr; 6(2):199-209. PubMed ID: 20821686 [TBL] [Abstract][Full Text] [Related]
52. [Use of dinoflagellates as a metal toxicity assessment tool in aquatic system]. Yuan LJ; He MC Huan Jing Ke Xue; 2009 Oct; 30(10):2918-23. PubMed ID: 19968107 [TBL] [Abstract][Full Text] [Related]
53. Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Jouanneau S; Durand MJ; Courcoux P; Blusseau T; Thouand G Environ Sci Technol; 2011 Apr; 45(7):2925-31. PubMed ID: 21355529 [TBL] [Abstract][Full Text] [Related]
54. A multi-metal risk assessment strategy for natural freshwater ecosystems based on the additive inhibitory free metal ion concentration index. Alves CM; Ferreira CMH; Soares EV; Soares HMVM Environ Pollut; 2017 Apr; 223():517-523. PubMed ID: 28159400 [TBL] [Abstract][Full Text] [Related]
55. Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions. Gandhi N; Huijbregts MA; Meent Dv; Peijnenburg WJ; Guinée J; Diamond ML Chemosphere; 2011 Jan; 82(2):268-77. PubMed ID: 20934738 [TBL] [Abstract][Full Text] [Related]
56. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards. Lathouri M; Korre A Sci Total Environ; 2015 Dec; 538():385-401. PubMed ID: 26318223 [TBL] [Abstract][Full Text] [Related]
57. Spatial and temporal variation of watertype-specific no-effect concentrations and risks of Cu, Ni, and Zn. Verschoor AJ; Vink JP; de Snoo GR; Vijver MG Environ Sci Technol; 2011 Jul; 45(14):6049-56. PubMed ID: 21710992 [TBL] [Abstract][Full Text] [Related]
58. Effects of chemical interaction of nutrients and EDTA on metals toxicity to Pseudokirckneriella subcapitata. Pascual G; Sano D; Sakamaki T; Nishimura O Ecotoxicol Environ Saf; 2020 Oct; 203():110966. PubMed ID: 32678755 [TBL] [Abstract][Full Text] [Related]
59. A model predicting waterborne cadmium bioaccumulation in Gammarus pulex: the effects of dissolved organic ligands, calcium, and temperature. Pellet B; Geffard O; Lacour C; Kermoal T; Gourlay-francé C; Tusseau-vuillemin MH Environ Toxicol Chem; 2009 Nov; 28(11):2434-42. PubMed ID: 19606912 [TBL] [Abstract][Full Text] [Related]
60. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Moberly JG; Staven A; Sani RK; Peyton BM Environ Sci Technol; 2010 Oct; 44(19):7302-8. PubMed ID: 20553043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]