These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19169951)

  • 1. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P
    Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater.
    Eashwar M; Sathish Kumar P; Ravishankar R; Subramanian G
    Biofouling; 2013; 29(2):185-93. PubMed ID: 23330652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of sunlight on the localized corrosion of UNS S31600 in natural seawater.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G
    Biofouling; 2011 Sep; 27(8):837-49. PubMed ID: 21819315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stainless steel in coastal seawater: sunlight counteracts biologically enhanced cathodic kinetics.
    Eashwar M; Lakshman Kumar A; Sreedhar G; Kennedy J; Suresh Bapu RH
    Biofouling; 2014 Sep; 30(8):929-39. PubMed ID: 25237771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface.
    Orfei LH; Simison S; Busalmen JP
    Environ Sci Technol; 2006 Oct; 40(20):6473-8. PubMed ID: 17120583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures.
    Lee JS; Ray RI; Lowe KL; Jones-Meehan J; Little BJ
    Biofouling; 2003 Apr; 19 Suppl():151-60. PubMed ID: 14618716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in Southeast Asian tropical seawater.
    Blackwood DJ; Lim CS; Teo SL
    Biofouling; 2010 Oct; 26(7):779-85. PubMed ID: 20818571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of scale deposition on cathodic-protection performance in desalination plant conditions.
    Hodgkiess T; Najm-Mohammed NA
    Water Sci Technol; 2004; 49(2):221-8. PubMed ID: 14982184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell.
    Dumas C; Mollica A; Féron D; Basseguy R; Etcheverry L; Bergel A
    Bioresour Technol; 2008 Dec; 99(18):8887-94. PubMed ID: 18558485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater.
    Parot S; Vandecandelaere I; Cournet A; Délia ML; Vandamme P; Bergé M; Roques C; Bergel A
    Bioresour Technol; 2011 Jan; 102(1):304-11. PubMed ID: 20673715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?
    Serhan H; Slivka M; Albert T; Kwak SD
    Spine J; 2004; 4(4):379-87. PubMed ID: 15246296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater.
    Acuña N; Ortega-Morales BO; Valadez-González A
    Mar Biotechnol (NY); 2006; 8(1):62-70. PubMed ID: 16453199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances.
    Shin JS; Oh KT; Hwang CJ
    Aust Orthod J; 2003 Apr; 19(1):13-8. PubMed ID: 12790351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of 316LVM and MP35N alloys as charge injection electrodes.
    Cogan SF; Jones GS; Hills DV; Walter JS; Riedy LW
    J Biomed Mater Res; 1994 Feb; 28(2):233-40. PubMed ID: 8207036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sampling natural biofilms: a new route to build efficient microbial anodes.
    Erable B; Roncato MA; Achouak W; Bergel A
    Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion behaviour and biofouling characteristics of structural steel in the coastal waters of the Gulf of Mannar (Bay of Bengal), India.
    Palanichamy S; Subramanian G; Eashwar M
    Biofouling; 2012; 28(5):441-51. PubMed ID: 22554304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular methods resolve the bacterial composition of natural marine biofilms on galvanically coupled stainless steel cathodes.
    Oldham AL; Steinberg MK; Duncan KE; Makama Z; Beech I
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):167-180. PubMed ID: 28013395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.
    Ries JB; Anderson MA; Hill RT
    Geobiology; 2008 Mar; 6(2):106-19. PubMed ID: 18380873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.