These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19170183)

  • 1. Conduction block and glial injury induced in developing central white matter by glycine, GABA, noradrenalin, or nicotine, studied in isolated neonatal rat optic nerve.
    Constantinou S; Fern R
    Glia; 2009 Aug; 57(11):1168-77. PubMed ID: 19170183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinic acetylcholine receptors in mouse and rat optic nerves.
    Zhang CL; Verbny Y; Malek SA; Stys PK; Chiu SY
    J Neurophysiol; 2004 Feb; 91(2):1025-35. PubMed ID: 14762152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for migration of oligodendrocyte--type-2 astrocyte progenitor cells into the developing rat optic nerve.
    Small RK; Riddle P; Noble M
    Nature; 1987 Jul 9-15; 328(6126):155-7. PubMed ID: 3600791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain.
    Farkas E; Donka G; de Vos RA; Mihály A; Bari F; Luiten PG
    Acta Neuropathol; 2004 Jul; 108(1):57-64. PubMed ID: 15138777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate receptor-mediated ischemic injury of premyelinated central axons.
    Alix JJ; Fern R
    Ann Neurol; 2009 Nov; 66(5):682-93. PubMed ID: 19938170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter.
    Back SA; Craig A; Kayton RJ; Luo NL; Meshul CK; Allcock N; Fern R
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):334-47. PubMed ID: 16757980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in astroglial scar formation in rat optic nerve as a function of development.
    Trimmer PA; Wunderlich RE
    J Comp Neurol; 1990 Jun; 296(3):359-78. PubMed ID: 2358542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient presence of GABA in astrocytes of the developing optic nerve.
    Ochi S; Lim JY; Rand MN; During MJ; Sakatani K; Kocsis JD
    Glia; 1993 Nov; 9(3):188-98. PubMed ID: 8294149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of GABA on axonal conduction and extracellular potassium activity in the neonatal rat optic nerve.
    Sakatani K; Hassan AZ; Chesler M
    Exp Neurol; 1994 Jun; 127(2):291-7. PubMed ID: 8033969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The astrocyte response to gamma-aminobutyric acid attenuates with age in the rat optic nerve.
    Butt AM; Jennings J
    Proc Biol Sci; 1994 Oct; 258(1351):9-15. PubMed ID: 7997461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin.
    Skoff RP; Price DL; Stocks A
    J Comp Neurol; 1976 Oct; 169(3):313-34. PubMed ID: 972202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve.
    Butt AM; Ransom BR
    J Comp Neurol; 1993 Dec; 338(1):141-58. PubMed ID: 8300897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroglia of the developing optic nerve in the course of Wallerian degeneration.
    Wender M; Kozik M; Goncerzewicz A; Mularek O
    J Hirnforsch; 1980; 21(4):417-28. PubMed ID: 7451940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional glutamate transport in rodent optic nerve axons and glia.
    Arranz AM; Hussein A; Alix JJ; Pérez-Cerdá F; Allcock N; Matute C; Fern R
    Glia; 2008 Sep; 56(12):1353-67. PubMed ID: 18551624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine- and GABA-activated currents in identified glial cells of the developing rat spinal cord slice.
    Pastor A; Chvátal A; Syková E; Kettenmann H
    Eur J Neurosci; 1995 Jun; 7(6):1188-98. PubMed ID: 7582092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxic injury of mammalian central white matter: decreased susceptibility in myelin-deficient optic nerve.
    Waxman SG; Davis PK; Black JA; Ransom BR
    Ann Neurol; 1990 Sep; 28(3):335-40. PubMed ID: 2241117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astrocytes in the lamina cribrosa of the rat optic nerve: are their morphological peculiarities involved in an altered blood-brain barrier?
    Wolburg H; Büerle C
    J Hirnforsch; 1993; 34(3):445-59. PubMed ID: 8270793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of cellular and molecular events associated with optic nerve axotomy.
    Nitzan A; Kermer P; Shirvan A; Bähr M; Barzilai A; Solomon AS
    Glia; 2006 Nov; 54(6):545-56. PubMed ID: 16906543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of epidermal growth factor receptors directs astrocytes to organize in a network surrounding axons in the developing rat optic nerve.
    Liu B; Neufeld AH
    Dev Biol; 2004 Sep; 273(2):297-307. PubMed ID: 15328014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glia as transmitter sources and sensors in health and disease.
    Domingues AM; Taylor M; Fern R
    Neurochem Int; 2010 Nov; 57(4):359-66. PubMed ID: 20380859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.