These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19170505)

  • 41. Formation of excited states during the oxidation of caffeic and 3,4 dihydroxyphenylacetic acids catalyzed by catechol oxidase.
    Villablanca M
    An Acad Bras Cienc; 1986 Dec; 58(4):557-60. PubMed ID: 3118748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidation of a biomarker for phenol carcinogen exposure: expanding the redox chemistry of 2'-deoxyguanosine.
    Weishar JL; McLaughlin CK; Baker M; Gabryelski W; Manderville RA
    Org Lett; 2008 May; 10(9):1839-42. PubMed ID: 18393513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.
    Perron NR; Brumaghim JL
    Cell Biochem Biophys; 2009; 53(2):75-100. PubMed ID: 19184542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Significance of flavonoids and related polyphenol compounds in nutrition].
    Zloch Z
    Cesk Gastroenterol Vyz; 1977 Apr; 31(3):207-10. PubMed ID: 880654
    [No Abstract]   [Full Text] [Related]  

  • 45. Production of o-diphenols by immobilized mushroom tyrosinase.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2009 Jan; 139(2):163-8. PubMed ID: 19047003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry.
    Abad-García B; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F
    J Chromatogr A; 2009 Jul; 1216(28):5398-415. PubMed ID: 19500791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Signal amplification by conjugate addition for differential sensing with synthetic pores.
    Hagihara S; Tanaka H; Matile S
    Org Biomol Chem; 2008 Jul; 6(13):2259-62. PubMed ID: 18563256
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An approach towards artificial quinone pools by use of photo- and redox-active dendritic molecules.
    Nagata T; Kikuzawa Y
    Biochim Biophys Acta; 2007 Jun; 1767(6):648-52. PubMed ID: 17196546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A chromatographic tool for preparing combinatorial quinone-thiol conjugate libraries.
    Villalba MM; Litchfield VJ; Smith RB; Franklin AM; Livingstone C; Davis J
    J Biochem Biophys Methods; 2007 Aug; 70(5):797-802. PubMed ID: 17597223
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of interference of p-diphenols with the Trinder reaction.
    Tarasek D; Gąsowska-Bajger B; Wojtasek H
    Bioorg Chem; 2020 Apr; 97():103692. PubMed ID: 32155504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection.
    Kuśmierek K; Chwatko G; Głowacki R; Bald E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3300-8. PubMed ID: 19386557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrophile tocopheryl quinones in apoptosis and mutagenesis: thermochemolysis of thiol adducts with proteins and in cells.
    Cornwell DG; Kim S; Mazzer PA; Jones KH; Hatcher PG
    Lipids; 2003 Sep; 38(9):973-9. PubMed ID: 14584605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical mechanisms for skin sensitization by aromatic compounds with hydroxy and amino groups.
    Aptula AO; Enoch SJ; Roberts DW
    Chem Res Toxicol; 2009 Sep; 22(9):1541-7. PubMed ID: 19678610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrafast internal conversion in a model anthocyanin-polyphenol complex: implications for the biological role of anthocyanins in vegetative tissues of plants.
    Rodrigues RF; da Silva PF; Shimizu K; Freitas AA; Kovalenko SA; Ernsting NP; Quina FH; Maçanita A
    Chemistry; 2009; 15(6):1397-402. PubMed ID: 19072804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2009 Mar; 636(1):42-50. PubMed ID: 19231354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Phenoloxidases. The achievements of and prospects for study].
    Rubin BA; Khandobina LM; Geraskina GV
    Usp Sovrem Biol; 1974; 77(1):70-89. PubMed ID: 4219515
    [No Abstract]   [Full Text] [Related]  

  • 57. Browning prevention by ascorbic acid and 4-hexylresorcinol: different mechanisms of action on polyphenol oxidase in the presence and in the absence of substrates.
    Arias E; González J; Peiró JM; Oria R; Lopez-Buesa P
    J Food Sci; 2007 Nov; 72(9):C464-70. PubMed ID: 18034705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase.
    Atlow SC; Bonadonna-Aparo L; Klibanov AM
    Biotechnol Bioeng; 1984 Jun; 26(6):599-603. PubMed ID: 18553376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic study of electrochemically induced michael reactions of o-quinones with Meldrum's acid derivatives. Synthesis of highly oxygenated catechols.
    Nematollahi D; Shayani-jam H
    J Org Chem; 2008 May; 73(9):3428-34. PubMed ID: 18396907
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyphenol oxidases.
    Butt VS
    Hoppe Seylers Z Physiol Chem; 1972 Feb; 353(2):131-2. PubMed ID: 4623841
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.