BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 19170656)

  • 1. Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis.
    Feta A; Do AT; Rentzsch F; Technau U; Kusche-Gullberg M
    Biochem J; 2009 May; 419(3):585-93. PubMed ID: 19170656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis.
    Mazza ME; Pang K; Martindale MQ; Finnerty JR
    J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):494-506. PubMed ID: 17377951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa).
    Martindale MQ; Pang K; Finnerty JR
    Development; 2004 May; 131(10):2463-74. PubMed ID: 15128674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis.
    Kim BT; Kitagawa H; Tamura J; Saito T; Kusche-Gullberg M; Lindahl U; Sugahara K
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7176-81. PubMed ID: 11390981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tinkering with heparan sulfate sulfation to steer development.
    Gorsi B; Stringer SE
    Trends Cell Biol; 2007 Apr; 17(4):173-7. PubMed ID: 17320398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of heparan sulfate in EXT1-deficient cells.
    Okada M; Nadanaka S; Shoji N; Tamura J; Kitagawa H
    Biochem J; 2010 May; 428(3):463-71. PubMed ID: 20377530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning.
    Rentzsch F; Anton R; Saina M; Hammerschmidt M; Holstein TW; Technau U
    Dev Biol; 2006 Aug; 296(2):375-87. PubMed ID: 16828077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron retention as a posttranscriptional regulatory mechanism of neurotoxin expression at early life stages of the starlet anemone Nematostella vectensis.
    Moran Y; Weinberger H; Reitzel AM; Sullivan JC; Kahn R; Gordon D; Finnerty JR; Gurevitz M
    J Mol Biol; 2008 Jul; 380(3):437-43. PubMed ID: 18538344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution.
    Uda K; Ellington WR; Suzuki T
    Gene; 2012 Apr; 497(2):214-27. PubMed ID: 22305986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nerve injury induces the expression of EXT2, a glycosyltransferase required for heparan sulfate synthesis.
    Murakami K; Namikawa K; Shimizu T; Shirasawa T; Yoshida S; Kiyama H
    Neuroscience; 2006 Sep; 141(4):1961-9. PubMed ID: 16784821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone.
    Finnerty JR; Pang K; Burton P; Paulson D; Martindale MQ
    Science; 2004 May; 304(5675):1335-7. PubMed ID: 15131263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family.
    Cadwallader AB; Yost HJ
    Dev Dyn; 2006 Dec; 235(12):3423-31. PubMed ID: 17075882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family.
    Cadwallader AB; Yost HJ
    Dev Dyn; 2006 Dec; 235(12):3432-7. PubMed ID: 17075883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparan sulphate biosynthesis and disease.
    Nadanaka S; Kitagawa H
    J Biochem; 2008 Jul; 144(1):7-14. PubMed ID: 18367479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heparin and heparan sulfate biosynthesis.
    Sugahara K; Kitagawa H
    IUBMB Life; 2002 Oct; 54(4):163-75. PubMed ID: 12512855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly efficient tree structure for the biosynthesis of heparan sulfate accounts for the commonly observed disaccharides and suggests a mechanism for domain synthesis.
    Rudd TR; Yates EA
    Mol Biosyst; 2012 Apr; 8(5):1499-506. PubMed ID: 22370609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome.
    Moran Y; Weinberger H; Sullivan JC; Reitzel AM; Finnerty JR; Gurevitz M
    Mol Biol Evol; 2008 Apr; 25(4):737-47. PubMed ID: 18222944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases.
    Cadwallader AB; Yost HJ
    Dev Dyn; 2007 Feb; 236(2):581-6. PubMed ID: 17195182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exostosin family of glycosyltransferases: mRNA expression profiles and heparan sulphate structure in human breast carcinoma cell lines.
    Sembajwe LF; Katta K; Grønning M; Kusche-Gullberg M
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 30054430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct tissue-specificity of three zebrafish ext1 genes encoding proteoglycan modifying enzymes and their relationship to somitic Sonic hedgehog signaling.
    Siekmann AF; Brand M
    Dev Dyn; 2005 Feb; 232(2):498-505. PubMed ID: 15614771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.