These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19170726)

  • 1. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.
    Boyd ES; King S; Tomberlin JK; Nordstrom DK; Krabbenhoft DP; Barkay T; Geesey GG
    Environ Microbiol; 2009 Apr; 11(4):950-9. PubMed ID: 19170726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal movement through insect food chains in pristine thermal springs of Yellowstone National Park.
    Adams B; Bowley J; Rohwer M; Oberg E; Willemssens K; Wintersteen W; Peterson RKD; Higley LG
    PeerJ; 2024; 12():e16827. PubMed ID: 38406272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment.
    Walker JJ; Spear JR; Pace NR
    Nature; 2005 Apr; 434(7036):1011-4. PubMed ID: 15846344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model description of trophodynamic behavior of methylmercury in a marine aquatic system.
    Tong Y; Zhang W; Hu X; Ou L; Hu D; Yang T; Wei W; Wang X
    Environ Pollut; 2012 Jul; 166():89-97. PubMed ID: 22481181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard.
    Jaeger I; Hop H; Gabrielsen GW
    Sci Total Environ; 2009 Aug; 407(16):4744-51. PubMed ID: 19454364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Necrophagy by a benthic omnivore influences biomagnification of methylmercury in fish.
    Bowling AM; Hammerschmidt CR; Oris JT
    Aquat Toxicol; 2011 Apr; 102(3-4):134-41. PubMed ID: 21356175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting methylmercury biomagnification by a widespread aquatic invertebrate predator, the phantom midge larvae Chaoborus.
    Le Jeune AH; Bourdiol F; Aldamman L; Perron T; Amyot M; Pinel-Alloul B
    Environ Pollut; 2012 Jun; 165():100-8. PubMed ID: 22420993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park.
    Langner HW; Jackson CR; McDermott TR; Inskeep WP
    Environ Sci Technol; 2001 Aug; 35(16):3302-9. PubMed ID: 11529568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting methylmercury distribution in surficial, acidic, base-metal mine tailings.
    Winch S; Praharaj T; Fortin D; Lean DR
    Sci Total Environ; 2008 Mar; 392(2-3):242-51. PubMed ID: 18191180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury (micro)biogeochemistry in polar environments.
    Barkay T; Poulain AJ
    FEMS Microbiol Ecol; 2007 Feb; 59(2):232-41. PubMed ID: 17199802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA).
    van der Meer MT; Schouten S; Damsté JS; Ward DM
    Environ Microbiol; 2007 Feb; 9(2):482-91. PubMed ID: 17222146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NOTES ON THE ECOLOGY OF A SPECIES OF ZYGOGONIUM (KÜTZ.) IN YELLOWSTONE NATIONAL PARK.
    Lynn R; Brock TD
    J Phycol; 1969 Sep; 5(3):181-5. PubMed ID: 27096335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica).
    Fernández-Valiente E; Camacho A; Rochera C; Rico E; Vincent WF; Quesada A
    FEMS Microbiol Ecol; 2007 Feb; 59(2):377-85. PubMed ID: 17069622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A geothermal-linked biological oasis in Yellowstone Lake, Yellowstone National Park, Wyoming.
    Lovalvo D; Clingenpeel SR; McGinnis S; Macur RE; Varley JD; Inskeep WP; Glime J; Nealson K; McDermott TR
    Geobiology; 2010 Sep; 8(4):327-36. PubMed ID: 20491946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
    Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP
    Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane-derived carbon flows through methane-oxidizing bacteria to higher trophic levels in aquatic systems.
    Deines P; Bodelier PL; Eller G
    Environ Microbiol; 2007 May; 9(5):1126-34. PubMed ID: 17472629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA.
    Brown PB; Wolfe GV
    J Eukaryot Microbiol; 2006; 53(6):420-31. PubMed ID: 17123405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal body burdens of methylmercury impair survival skills of offspring in Atlantic croaker (Micropogonias undulatus).
    Alvarez Mdel C; Murphy CA; Rose KA; McCarthy ID; Fuiman LA
    Aquat Toxicol; 2006 Dec; 80(4):329-37. PubMed ID: 17083986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The movement of aquatic mercury through terrestrial food webs.
    Cristol DA; Brasso RL; Condon AM; Fovargue RE; Friedman SL; Hallinger KK; Monroe AP; White AE
    Science; 2008 Apr; 320(5874):335. PubMed ID: 18420925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel.
    Spanevello MD; Patel BK
    FEMS Microbiol Ecol; 2004 Oct; 50(1):63-73. PubMed ID: 19712377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.