These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 19170858)

  • 1. Microbial inactivation using plasma-activated water obtained by gliding electric discharges.
    Kamgang-Youbi G; Herry JM; Meylheuc T; Brisset JL; Bellon-Fontaine MN; Doubla A; Naïtali M
    Lett Appl Microbiol; 2009 Jan; 48(1):13-8. PubMed ID: 19170858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact on disinfection efficiency of cell load and of planktonic/adherent/detached state: case of Hafnia alvei inactivation by plasma activated water.
    Kamgang-Youbi G; Herry JM; Brisset JL; Bellon-Fontaine MN; Doubla A; Naïtali M
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):449-57. PubMed ID: 18769918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air.
    Kamgang JO; Briandet R; Herry JM; Brisset JL; Naïtali M
    J Appl Microbiol; 2007 Sep; 103(3):621-8. PubMed ID: 17714395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of temporal postdischarge decontamination of bacteria by gliding electric discharges: application to Hafnia alvei.
    Kamgang-Youbi G; Herry JM; Bellon-Fontaine MN; Brisset JL; Doubla A; Naïtali M
    Appl Environ Microbiol; 2007 Aug; 73(15):4791-6. PubMed ID: 17557841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma.
    Joshi SG; Paff M; Friedman G; Fridman G; Fridman A; Brooks AD
    Am J Infect Control; 2010 May; 38(4):293-301. PubMed ID: 20085853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of a fluidized bed system for wheat grain disinfection.
    Dhillon B; Wiesenborn D; Dhillon H; Wolf-Hall C
    J Food Sci; 2010 Aug; 75(6):E372-8. PubMed ID: 20722922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry.
    Selma MV; Allende A; López-Gálvez F; Conesa MA; Gil MI
    Food Microbiol; 2008 Sep; 25(6):809-14. PubMed ID: 18620973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of lethal and sublethal injury in food-borne bacterial pathogens exposed to high-intensity pulsed-plasma gas discharges.
    Rowan NJ; Espie S; Harrower J; Farrell H; Marsili L; Anderson JG; MacGregor SJ
    Lett Appl Microbiol; 2008 Jan; 46(1):80-6. PubMed ID: 17983430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension.
    Matafonova GG; Batoev VB; Astakhova SA; Gómez M; Christofi N
    Lett Appl Microbiol; 2008 Dec; 47(6):508-13. PubMed ID: 19120918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lethal effect of the gliding arc discharges on Erwinia spp.
    Moreau M; Feuilloley MG; Orange N; Brisset JL
    J Appl Microbiol; 2005; 98(5):1039-46. PubMed ID: 15836472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of food composition on the inactivation of foodborne microorganisms by chlorine dioxide.
    Vandekinderen I; Devlieghere F; Van Camp J; Kerkaert B; Cucu T; Ragaert P; De Bruyne J; De Meulenaer B
    Int J Food Microbiol; 2009 May; 131(2-3):138-44. PubMed ID: 19254814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disinfection methods used in decontamination of bottles used for feeding powdered infant formula.
    Redmond E; Griffith CJ
    J Fam Health Care; 2009; 19(1):26-31. PubMed ID: 19370863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medical device disinfection by dense carbon dioxide.
    Bertoloni G; Bertucco A; Rassu M; Vezzù K
    J Hosp Infect; 2011 Jan; 77(1):42-6. PubMed ID: 21130522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores.
    Hong YF; Kang JG; Lee HY; Uhm HS; Moon E; Park YH
    Lett Appl Microbiol; 2009 Jan; 48(1):33-7. PubMed ID: 19018968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozone gas is an effective and practical antibacterial agent.
    Sharma M; Hudson JB
    Am J Infect Control; 2008 Oct; 36(8):559-63. PubMed ID: 18926308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system.
    Tanner BD
    Am J Infect Control; 2009 Feb; 37(1):20-7. PubMed ID: 18834748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films.
    Alrousan DM; Dunlop PS; McMurray TA; Byrne JA
    Water Res; 2009 Jan; 43(1):47-54. PubMed ID: 19007965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes.
    Song HP; Kim B; Choe JH; Jung S; Moon SY; Choe W; Jo C
    Food Microbiol; 2009 Jun; 26(4):432-6. PubMed ID: 19376467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles.
    Lee BU; Yun SH; Ji JH; Bae GN
    J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria.
    Kim YS; Yoon KY; Park JH; Hwang J
    Sci Total Environ; 2011 Jan; 409(4):748-55. PubMed ID: 21146197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.