These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 19171133)
1. Molecular mechanism of KCl-induced relaxation of the esophagus. Yaktubay Döndaş N; Karataş Y; Kaya D; Soylu N; Singirik E; Baysal F Eur J Pharmacol; 2009 Mar; 605(1-3):123-8. PubMed ID: 19171133 [TBL] [Abstract][Full Text] [Related]
2. Ethanol-induced relaxation of mouse esophagus: subcellular mechanisms. Döndaş NY; Kaya D; Kaplan M; Ertuğ P; Singirik E Fundam Clin Pharmacol; 2010 Apr; 24(2):161-70. PubMed ID: 19735302 [TBL] [Abstract][Full Text] [Related]
3. Effect of Tityus serrulatus scorpion venom on the rabbit isolated corpus cavernosum and the involvement of NANC nitrergic nerve fibres. Teixeira CE; Bento AC; Lopes-Martins RA; Teixeira SA; von Eickestedt V; Muscará MN; Arantes EC; Giglio JR; Antunes E; de Nucci G Br J Pharmacol; 1998 Feb; 123(3):435-42. PubMed ID: 9504384 [TBL] [Abstract][Full Text] [Related]
4. Activation of brain nitric oxide synthase in depolarized human temporal cortex slices: differential role of voltage-sensitive calcium channels. Fontana G; Fedele E; Cossu M; Munari C; Raiteri M Br J Pharmacol; 1997 Nov; 122(5):930-4. PubMed ID: 9384511 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide from enteric nerves acts by a different mechanism from myogenic nitric oxide in canine lower esophageal sphincter. Daniel EE; Jury J; Salapatek AM; Bowes T; Lam A; Thomas S; Ramnarain M; Nguyen V; Mistry V J Pharmacol Exp Ther; 2000 Jul; 294(1):270-9. PubMed ID: 10871322 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a role for nitric oxide in relation of the frog oesophageal body to electrical field stimulation. Williams SJ; Parsons ME Br J Pharmacol; 1997 Sep; 122(1):179-85. PubMed ID: 9298545 [TBL] [Abstract][Full Text] [Related]
7. PACAP 38 is involved in the non-adrenergic non-cholinergic inhibitory neurotransmission in the pig urinary bladder neck. Hernández M; Barahona MV; Recio P; Bustamante S; Benedito S; Rivera L; García-Sacristán A; Prieto D; Orensanz LM Neurourol Urodyn; 2006; 25(5):490-7. PubMed ID: 16721838 [TBL] [Abstract][Full Text] [Related]
8. An ethyl acetate fraction obtained from a Southern Brazilian red wine relaxes rat mesenteric arterial bed through hyperpolarization and NO-cGMP pathway. Schuldt EZ; Bet AC; Hort MA; Ianssen C; Maraschin M; Ckless K; Ribeiro-do-Valle RM Vascul Pharmacol; 2005 Jun; 43(1):62-8. PubMed ID: 15935737 [TBL] [Abstract][Full Text] [Related]
9. Analysis of acetylcholine-induced relaxation of rabbit isolated middle cerebral artery: effects of inhibitors of nitric oxide synthesis, Na,K-ATPase, and ATP-sensitive K channels. Parsons AA; Schilling L; Wahl M J Cereb Blood Flow Metab; 1991 Jul; 11(4):700-4. PubMed ID: 1646828 [TBL] [Abstract][Full Text] [Related]
10. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
11. Evidence for the interaction between nitric oxide and vasoactive intestinal polypeptide in the mouse gastric fundus. Ergün Y; Oğülener N J Pharmacol Exp Ther; 2001 Dec; 299(3):945-50. PubMed ID: 11714881 [TBL] [Abstract][Full Text] [Related]
12. Phentolamine relaxes human corpus cavernosum by a nonadrenergic mechanism activating ATP-sensitive K+ channel. Silva LF; Nascimento NR; Fonteles MC; de Nucci G; Moraes ME; Vasconcelos PR; Moraes MO Int J Impot Res; 2005; 17(1):27-32. PubMed ID: 15510188 [TBL] [Abstract][Full Text] [Related]
13. Ischaemia enhances the role of Ca2+-activated K+ channels in endothelium-dependent and nitric oxide-mediated dilatation of the rat hindquarters vasculature. Woodman OL; Wongsawatkul O Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):254-60. PubMed ID: 15053823 [TBL] [Abstract][Full Text] [Related]
14. Airway smooth muscle relaxation induced by 5-HT(2A) receptors: role of Na(+)/K(+)-ATPase pump and Ca(2+)-activated K(+) channels. Campos-Bedolla P; Vargas MH; Segura P; Carbajal V; Calixto E; Figueroa A; Flores-Soto E; Barajas-López C; Mendoza-Patiño N; Montaño LM Life Sci; 2008 Sep; 83(11-12):438-46. PubMed ID: 18708073 [TBL] [Abstract][Full Text] [Related]
15. Acetylcholine-induced vasodilation may depend entirely upon NO in the femoral artery of young piglets. Støen R; Lossius K; Karlsson JO Br J Pharmacol; 2003 Jan; 138(1):39-46. PubMed ID: 12522071 [TBL] [Abstract][Full Text] [Related]
16. Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter. McDonnell B; Hamilton R; Fong M; Ward SM; Keef KD Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G1041-51. PubMed ID: 18308858 [TBL] [Abstract][Full Text] [Related]
17. Characterization of relaxant mechanism of H2 S in mouse corpus cavernosum. Aydinoglu F; Ogulener N Clin Exp Pharmacol Physiol; 2016 Apr; 43(4):503-11. PubMed ID: 26845078 [TBL] [Abstract][Full Text] [Related]
18. Relaxation mechanisms of neferine on the rabbit corpus cavernosum tissue in vitro. Chen J; Qi J; Chen F; Liu JH; Wang T; Yang J; Yin CP Asian J Androl; 2007 Nov; 9(6):795-800. PubMed ID: 17968465 [TBL] [Abstract][Full Text] [Related]
19. Brazilein-induced contraction of rat arterial smooth muscle involves activation of Ca2+ entry and ROK, ERK pathways. Shen J; Yip S; Wang Z; Wang W; Xing D; Du L Eur J Pharmacol; 2008 Feb; 580(3):366-71. PubMed ID: 18177858 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of the vasorelaxant effect of 1, 5-dihydroxy-2, 3-dimethoxy-xanthone, an active metabolite of 1-hydroxy-2, 3, 5-trimethoxy-xanthone isolated from a Tibetan herb, Halenia elliptica, on rat coronary artery. Wang Y; Shi JG; Wang MZ; Che CT; Yeung JH Life Sci; 2008 Jan; 82(1-2):91-8. PubMed ID: 18045622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]