These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19171345)

  • 1. Rapid identification of elastic modulus of the interface tissue on dental implants surfaces using reduced-basis method and a neural network.
    Zaw K; Liu GR; Deng B; Tan KB
    J Biomech; 2009 Mar; 42(5):634-41. PubMed ID: 19171345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of osseointegration degree and pattern on resonance frequency in the assessment of dental implant stability using finite element analysis.
    Deng B; Tan KB; Liu GR; Lu Y
    Int J Oral Maxillofac Implants; 2008; 23(6):1082-8. PubMed ID: 19216277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifiable range of osseointegration of dental implants through resonance frequency analysis.
    Wang S; Liu GR; Hoang KC; Guo Y
    Med Eng Phys; 2010 Dec; 32(10):1094-106. PubMed ID: 20829089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material parameters of the reindeer antler for use in dental implant biomechanics.
    Hasan I; Keilig L; Reimann S; Rahimi A; Wahl G; Bourauel C
    Ann Anat; 2012 Nov; 194(6):518-23. PubMed ID: 22429868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic natures of implant loading.
    Wang RF; Kang B; Lang LA; Razzoog ME
    J Prosthet Dent; 2009 Jun; 101(6):359-71. PubMed ID: 19463663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.
    Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of bone regeneration in a bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Dent Res; 2009 Feb; 88(2):158-63. PubMed ID: 19278988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of loading frequency on implant failure under cyclic fatigue conditions.
    Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1426-32. PubMed ID: 19643468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.
    Shan B; Pelegri AA; Maleke C; Konofagou EE
    J Biomech; 2008 Jul; 41(10):2150-8. PubMed ID: 18571182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between Shore hardness of elastomeric dental materials and Young's modulus.
    Meththananda IM; Parker S; Patel MP; Braden M
    Dent Mater; 2009 Aug; 25(8):956-9. PubMed ID: 19286248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis.
    Huang HL; Fuh LJ; Ko CC; Hsu JT; Chen CC
    Int J Oral Maxillofac Implants; 2009; 24(3):455-62. PubMed ID: 19587867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulating a clinical trial of a load-bearing implant: an example of an intramedullary prosthesis.
    Prendergast PJ; Galibarov PE; Lowery C; Lennon AB
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1880-7. PubMed ID: 22098887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the elastic modulus of mouse cortical bone using electronic speckle pattern interferometry (ESPI) and micro computed tomography: a new approach for characterizing small-bone material properties.
    Chattah NL; Sharir A; Weiner S; Shahar R
    Bone; 2009 Jul; 45(1):84-90. PubMed ID: 19332167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the electromechanical impedance technique for the assessment of dental implant stability.
    LaMalfa Ribolla E; Rizzo P
    J Biomech; 2015 Jul; 48(10):1713-20. PubMed ID: 26070645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apparent damage accumulation in cancellous bone using neural networks.
    Hambli R
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):868-78. PubMed ID: 21616468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.