These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19171433)

  • 1. Fabrication and field emission properties of boron nanowire bundles.
    Liu F; Liang WJ; Su ZJ; Xia JX; Deng SZ; Chen J; She JC; Xu NS; Tian JF; Shen CM; Gao HJ
    Ultramicroscopy; 2009 Apr; 109(5):447-50. PubMed ID: 19171433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical and field emission properties of thin single-crystalline GaN nanowires.
    Ha B; Seo SH; Cho JH; Yoon CS; Yoo J; Yi GC; Park CY; Lee CJ
    J Phys Chem B; 2005 Jun; 109(22):11095-9. PubMed ID: 16852353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-crystalline GdB6 nanowire field emitters.
    Zhang H; Zhang Q; Zhao G; Tang J; Zhou O; Qin LC
    J Am Chem Soc; 2005 Sep; 127(38):13120-1. PubMed ID: 16173720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties.
    Xi G; He Y; Wang C
    Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excellent field-emission properties of P-doped GaN nanowires.
    Liu BD; Bando Y; Tang CC; Xu FF; Golberg D
    J Phys Chem B; 2005 Nov; 109(46):21521-4. PubMed ID: 16853794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of iron silicon boron (Fe5Si2B) and iron boride (Fe3B) nanowires.
    Li Y; Chang RP
    J Am Chem Soc; 2006 Oct; 128(39):12778-84. PubMed ID: 17002372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles.
    Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z
    ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-crystalline ZnO nanowire bundles: synthesis, mechanism and their application in dielectric composites.
    Wang G; Deng Y; Guo L
    Chemistry; 2010 Sep; 16(33):10220-5. PubMed ID: 20589828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties.
    Pan H; Liu B; Yi J; Poh C; Lim S; Ding J; Feng Y; Huan CH; Lin J
    J Phys Chem B; 2005 Mar; 109(8):3094-8. PubMed ID: 16851327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy.
    In J; Yoon I; Seo K; Park J; Choo J; Lee Y; Kim B
    Chemistry; 2011 Jan; 17(4):1304-9. PubMed ID: 21243698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition.
    Hu Y; To AC; Yun M
    Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubility of Mo6S4.5I4.5 nanowires in common solvents: a sedimentation study.
    Nicolosi V; Vrbanic D; Mrzel A; McCauley J; O'Flaherty S; McGuinness C; Compagnini G; Mihailovic D; Blau WJ; Coleman JN
    J Phys Chem B; 2005 Apr; 109(15):7124-33. PubMed ID: 16851812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe3O4-LiMo3Se3 nanoparticle clusters as superparamagnetic nanocompasses.
    Osterloh FE; Hiramatsu H; Dumas RK; Liu K
    Langmuir; 2005 Oct; 21(21):9709-13. PubMed ID: 16207056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays.
    Zhai T; Fang X; Bando Y; Liao Q; Xu X; Zeng H; Ma Y; Yao J; Golberg D
    ACS Nano; 2009 Apr; 3(4):949-59. PubMed ID: 19309112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and electrical properties of ZnO nanowires.
    Xing X; Zheng K; Xu H; Fang F; Shen H; Zhang J; Zhu J; Ye C; Cao G; Sun D; Chen G
    Micron; 2006; 37(4):370-3. PubMed ID: 16376557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced field-emission from SnO2:WO(2.72) nanowire heterostructures.
    Shinde DR; Chavan PG; Sen S; Joag DS; More MA; Gadkari SC; Gupta SK
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4730-5. PubMed ID: 22066739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance.
    Li Y; Yang XY; Rooke J; Van Tendeloo G; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(2):303-12. PubMed ID: 20546764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of single-crystalline ZnTe nanowire arrays.
    Li L; Yang Y; Huang X; Li G; Zhang L
    J Phys Chem B; 2005 Jun; 109(25):12394-8. PubMed ID: 16852533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates.
    Wen X; Wang S; Xie Y; Li XY; Yang S
    J Phys Chem B; 2005 May; 109(20):10100-6. PubMed ID: 16852224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.