BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19171486)

  • 21. Apoptosis occurs via the ceramide recycling pathway in human HaCaT keratinocytes.
    Takeda S; Mitsutake S; Tsuji K; Igarashi Y
    J Biochem; 2006 Feb; 139(2):255-62. PubMed ID: 16452313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis.
    Allan D
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):603-10. PubMed ID: 10642519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The chemistry and biology of 6-hydroxyceramide, the youngest member of the human sphingolipid family.
    Kováčik A; Roh J; Vávrová K
    Chembiochem; 2014 Jul; 15(11):1555-62. PubMed ID: 24990520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and structure-activity relationships of skin ceramides.
    Novotný J; Hrabálek A; Vávrová K
    Curr Med Chem; 2010; 17(21):2301-24. PubMed ID: 20459376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible, polymer-supported synthesis of sphingosine derivatives provides ceramides with enhanced biological activity.
    El-Dahshan A; Al-Gharabli SI; Radetzki S; Al-Tel TH; Kumar P; Rademann J
    Bioorg Med Chem; 2014 Oct; 22(19):5506-12. PubMed ID: 25172146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: antagonism by cell-permeable ceramides.
    Gomez-Muñoz A; Duffy PA; Martin A; O'Brien L; Byun HS; Bittman R; Brindley DN
    Mol Pharmacol; 1995 May; 47(5):833-9. PubMed ID: 7746276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells.
    Ridgway ND; Merriam DL
    Biochim Biophys Acta; 1995 Apr; 1256(1):57-70. PubMed ID: 7742357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Ceramide-Dependent Cancer Cell Death.
    Nganga R; Oleinik N; Ogretmen B
    Adv Cancer Res; 2018; 140():1-25. PubMed ID: 30060806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane.
    Canals D; Jenkins RW; Roddy P; Hernández-Corbacho MJ; Obeid LM; Hannun YA
    J Biol Chem; 2010 Oct; 285(42):32476-85. PubMed ID: 20679347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria.
    Becam J; Walter T; Burgert A; Schlegel J; Sauer M; Seibel J; Schubert-Unkmeir A
    Sci Rep; 2017 Dec; 7(1):17627. PubMed ID: 29247204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Cross talk" between the bioactive glycerolipids and sphingolipids in signal transduction.
    Brindley DN; Abousalham A; Kikuchi Y; Wang CN; Waggoner DW
    Biochem Cell Biol; 1996; 74(4):469-76. PubMed ID: 8960353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cancer and sphingolipid storage disease therapy using novel synthetic analogs of sphingolipids.
    Gatt S; Dagan A
    Chem Phys Lipids; 2012 May; 165(4):462-74. PubMed ID: 22387097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of altered sphingolipid acyl chain length on various disease models.
    Park WJ; Park JW
    Biol Chem; 2015 Jun; 396(6-7):693-705. PubMed ID: 25720066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of stereochemistry, saturation, and hydrocarbon chain length on the ability of synthetic constrained azacyclic sphingolipids to trigger nutrient transporter down-regulation, vacuolation, and cell death.
    Perryman MS; Tessier J; Wiher T; O'Donoghue H; McCracken AN; Kim SM; Nguyen DG; Simitian GS; Viana M; Rafelski S; Edinger AL; Hanessian S
    Bioorg Med Chem; 2016 Sep; 24(18):4390-4397. PubMed ID: 27475534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of Ceramide Synthase 6 Transcriptionally Activates Acid Ceramidase in a c-Jun N-terminal Kinase (JNK)-dependent Manner.
    Tirodkar TS; Lu P; Bai A; Scheffel MJ; Gencer S; Garrett-Mayer E; Bielawska A; Ogretmen B; Voelkel-Johnson C
    J Biol Chem; 2015 May; 290(21):13157-67. PubMed ID: 25839235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in the signal transduction of ceramide and related sphingolipids.
    Liu G; Kleine L; Hébert RL
    Crit Rev Clin Lab Sci; 1999 Dec; 36(6):511-73. PubMed ID: 10656539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry.
    Sullards MC; Wang E; Peng Q; Merrill AH
    Cell Mol Biol (Noisy-le-grand); 2003 Jul; 49(5):789-97. PubMed ID: 14528916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroprotective role of sphingolipid rheostat in excitotoxic retinal ganglion cell death.
    Nakamura N; Honjo M; Yamagishi R; Kurano M; Yatomi Y; Watanabe S; Aihara M
    Exp Eye Res; 2021 Jul; 208():108623. PubMed ID: 34022173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel agents targeting bioactive sphingolipids for the treatment of cancer.
    Adan-Gokbulut A; Kartal-Yandim M; Iskender G; Baran Y
    Curr Med Chem; 2013; 20(1):108-22. PubMed ID: 23244584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death.
    Mullen TD; Obeid LM
    Anticancer Agents Med Chem; 2012 May; 12(4):340-63. PubMed ID: 21707511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.