These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19171515)

  • 1. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.
    Ursino M; Magosso E; Cuppini C
    IEEE Trans Neural Netw; 2009 Feb; 20(2):316-35. PubMed ID: 19171515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.
    Ursino M; Magosso E; La Cara GE; Cuppini C
    Biosystems; 2006 Sep; 85(3):201-18. PubMed ID: 16635545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.
    Cona F; Zavaglia M; Ursino M
    Int J Neural Syst; 2012 Apr; 22(2):1250003. PubMed ID: 23627589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Object segmentation and reconstruction via an oscillatory neural network: interaction among learning, memory, topological organization and gamma-band synchronization.
    Magosso E; Cuppini C; Ursino M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4953-6. PubMed ID: 17945869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network model of semantic memory linking feature-based object representation and words.
    Cuppini C; Magosso E; Ursino M
    Biosystems; 2009 Jun; 96(3):195-205. PubMed ID: 19758544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of categories and the representation of feature saliency: analysis with a computational model trained with an Hebbian paradigm.
    Ursino M; Cuppini C; Magosso E
    J Integr Neurosci; 2013 Dec; 12(4):401-25. PubMed ID: 24372062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network for learning the meaning of objects and words from a featural representation.
    Ursino M; Cuppini C; Magosso E
    Neural Netw; 2015 Mar; 63():234-53. PubMed ID: 25569782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal bases of perceptual learning revealed by a synaptic balance scheme.
    Hoshino O
    Neural Comput; 2004 Mar; 16(3):563-94. PubMed ID: 15006092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perceptual retouch theory derived modeling of interactions in the processing of successive visual objects for consciousness: two-stage synchronization of neuronal oscillators.
    Kirt T; Bachmann T
    Conscious Cogn; 2013 Mar; 22(1):330-47. PubMed ID: 22892586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated neural model of semantic memory, lexical retrieval and category formation, based on a distributed feature representation.
    Ursino M; Cuppini C; Magosso E
    Cogn Neurodyn; 2011 Jun; 5(2):183-207. PubMed ID: 22654990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding and segmentation of multiple objects through neural oscillators inhibited by contour information.
    Ursino M; La Cara GE; Sarti A
    Biol Cybern; 2003 Jul; 89(1):56-70. PubMed ID: 12836033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural model of selective attention and object segmentation in the visual scene: an approach based on partial synchronization and star-like architecture of connections.
    Borisyuk R; Kazanovich Y; Chik D; Tikhanoff V; Cangelosi A
    Neural Netw; 2009; 22(5-6):707-19. PubMed ID: 19616919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing one-shot learning with binary synapses.
    Romani S; Amit DJ; Amit Y
    Neural Comput; 2008 Aug; 20(8):1928-50. PubMed ID: 18386988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semantic model to study neural organization of language in bilingualism.
    Ursino M; Cuppini C; Magosso E
    Comput Intell Neurosci; 2010; 2010():350269. PubMed ID: 20204173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth of treatment sensitive noise resistant dynamic artificial neural networks model of recall in people with prosopagnosia.
    Morissette L; Chartier S; Vandermeulen R; Watier N
    Neural Netw; 2012 Aug; 32():46-56. PubMed ID: 22406172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy associative conjuncted maps network.
    Goh H; Lim JH; Quek C
    IEEE Trans Neural Netw; 2009 Aug; 20(8):1302-19. PubMed ID: 19635694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory formation by neuronal synchronization.
    Axmacher N; Mormann F; Fernández G; Elger CE; Fell J
    Brain Res Rev; 2006 Aug; 52(1):170-82. PubMed ID: 16545463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.