These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 19171776)

  • 1. A splicer that represses (translation).
    Wharton RP
    Genes Dev; 2009 Jan; 23(2):133-7. PubMed ID: 19171776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation.
    Besse F; López de Quinto S; Marchand V; Trucco A; Ephrussi A
    Genes Dev; 2009 Jan; 23(2):195-207. PubMed ID: 19131435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization.
    Hachet O; Ephrussi A
    Nature; 2004 Apr; 428(6986):959-63. PubMed ID: 15118729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila Hephaestus/polypyrimidine tract binding protein is required for dorso-ventral patterning and regulation of signalling between the germline and soma.
    McDermott SM; Davis I
    PLoS One; 2013; 8(7):e69978. PubMed ID: 23894566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase.
    Tadros W; Goldman AL; Babak T; Menzies F; Vardy L; Orr-Weaver T; Hughes TR; Westwood JT; Smibert CA; Lipshitz HD
    Dev Cell; 2007 Jan; 12(1):143-55. PubMed ID: 17199047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors.
    Gama-Carvalho M; Barbosa-Morais NL; Brodsky AS; Silver PA; Carmo-Fonseca M
    Genome Biol; 2006; 7(11):R113. PubMed ID: 17137510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte.
    Kato Y; Nakamura A
    Dev Growth Differ; 2012 Jan; 54(1):19-31. PubMed ID: 22111938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for polypyrimidine tract binding protein in the establishment of focal adhesions.
    Babic I; Sharma S; Black DL
    Mol Cell Biol; 2009 Oct; 29(20):5564-77. PubMed ID: 19667078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. shot regulates the microtubule reorganization required for localization of axis-determining mRNAs during oogenesis.
    Lee J; Lee S; Chen C; Shim H; Kim-Ha J
    FEBS Lett; 2016 Feb; 590(4):431-44. PubMed ID: 26832192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of PTB or negative regulation of Notch mRNA reveals distinct zones of Notch and actin protein accumulation in Drosophila embryo.
    Wesley CS; Guo H; Chaudhry KA; Thali MJ; Yin JC; Clason T; Wesley UV
    PLoS One; 2011; 6(7):e21876. PubMed ID: 21750738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ME31B globally represses maternal mRNAs by two distinct mechanisms during the
    Wang M; Ly M; Lugowski A; Laver JD; Lipshitz HD; Smibert CA; Rissland OS
    Elife; 2017 Sep; 6():. PubMed ID: 28875934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypyrimidine tract-binding protein homologues from Arabidopsis underlie regulatory circuits based on alternative splicing and downstream control.
    Stauffer E; Westermann A; Wagner G; Wachter A
    Plant J; 2010 Oct; 64(2):243-55. PubMed ID: 20735772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cup regulates oskar mRNA stability during oogenesis.
    Broyer RM; Monfort E; Wilhelm JE
    Dev Biol; 2017 Jan; 421(1):77-85. PubMed ID: 27554167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relocalization of the polypyrimidine tract-binding protein during PKA-induced neurite growth.
    Ma S; Liu G; Sun Y; Xie J
    Biochim Biophys Acta; 2007 Jun; 1773(6):912-23. PubMed ID: 17400307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative splicing of an rnp-4f mRNA isoform retaining an evolutionarily-conserved 5'-UTR intronic element is developmentally regulated and shown via RNAi to be essential for normal central nervous system development in Drosophila melanogaster.
    Chen J; Concel VJ; Bhatla S; Rajeshwaran R; Smith DL; Varadarajan M; Backscheider KL; Bockrath RA; Petschek JP; Vaughn JC
    Gene; 2007 Sep; 399(2):91-104. PubMed ID: 17582706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel modes of splicing repression by PTB.
    Spellman R; Smith CW
    Trends Biochem Sci; 2006 Feb; 31(2):73-6. PubMed ID: 16403634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein.
    Sawicka K; Bushell M; Spriggs KA; Willis AE
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):641-7. PubMed ID: 18631133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA.
    Hall MP; Huang S; Black DL
    Mol Biol Cell; 2004 Feb; 15(2):774-86. PubMed ID: 14657238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polypyrimidine tract-binding protein is required for the repression of gene expression by all-trans retinoic acid.
    Tamanoue Y; Yamagishi M; Hongo I; Okamoto H
    Dev Growth Differ; 2010 Jun; 52(5):469-79. PubMed ID: 20507360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.