These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 19171935)
1. Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. Hamdane D; Xia C; Im SC; Zhang H; Kim JJ; Waskell L J Biol Chem; 2009 Apr; 284(17):11374-84. PubMed ID: 19171935 [TBL] [Abstract][Full Text] [Related]
2. A flexible linker of 8-amino acids between the membrane binding segment and the FMN domain of cytochrome P450 reductase is necessary for optimal activity. Rwere F; Cartee NMP; Yang Y; Waskell L J Inorg Biochem; 2024 Oct; 259():112667. PubMed ID: 39032346 [TBL] [Abstract][Full Text] [Related]
3. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone. Rwere F; Xia C; Im S; Haque MM; Stuehr DJ; Waskell L; Kim JJ J Biol Chem; 2016 Jul; 291(28):14639-61. PubMed ID: 27189945 [TBL] [Abstract][Full Text] [Related]
4. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Iyanagi T; Xia C; Kim JJ Arch Biochem Biophys; 2012 Dec; 528(1):72-89. PubMed ID: 22982532 [TBL] [Abstract][Full Text] [Related]
5. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences. Roman LJ; McLain J; Masters BS J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215 [TBL] [Abstract][Full Text] [Related]
6. Conformational changes of NADPH-cytochrome P450 oxidoreductase are essential for catalysis and cofactor binding. Xia C; Hamdane D; Shen AL; Choi V; Kasper CB; Pearl NM; Zhang H; Im SC; Waskell L; Kim JJ J Biol Chem; 2011 May; 286(18):16246-60. PubMed ID: 21345800 [TBL] [Abstract][Full Text] [Related]
7. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer. Xia C; Rwere F; Im S; Shen AL; Waskell L; Kim JP Biochemistry; 2018 Feb; 57(6):945-962. PubMed ID: 29308883 [TBL] [Abstract][Full Text] [Related]
8. Diminished FAD binding in the Y459H and V492E Antley-Bixler syndrome mutants of human cytochrome P450 reductase. Marohnic CC; Panda SP; Martásek P; Masters BS J Biol Chem; 2006 Nov; 281(47):35975-82. PubMed ID: 16998238 [TBL] [Abstract][Full Text] [Related]
9. The FMN "140s Loop" of Cytochrome P450 Reductase Controls Electron Transfer to Cytochrome P450. Rwere F; Im S; Waskell L Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638963 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase. Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335 [TBL] [Abstract][Full Text] [Related]
11. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the FAD/NADPH-binding domain of rat neuronal nitric-oxide synthase. Comparisons with NADPH-cytochrome P450 oxidoreductase. Zhang J; Martàsek P; Paschke R; Shea T; Siler Masters BS; Kim JJ J Biol Chem; 2001 Oct; 276(40):37506-13. PubMed ID: 11473123 [TBL] [Abstract][Full Text] [Related]
13. Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency. Jin Y; Chen M; Penning TM; Miller WL Biochem J; 2015 May; 468(1):25-31. PubMed ID: 25728647 [TBL] [Abstract][Full Text] [Related]
14. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450. Laursen T; Jensen K; Møller BL Biochim Biophys Acta; 2011 Jan; 1814(1):132-8. PubMed ID: 20624491 [TBL] [Abstract][Full Text] [Related]
15. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains. Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263 [TBL] [Abstract][Full Text] [Related]
16. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium. Chen HC; Swenson RP Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Wang M; Roberts DL; Paschke R; Shea TM; Masters BS; Kim JJ Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8411-6. PubMed ID: 9237990 [TBL] [Abstract][Full Text] [Related]
18. Determination of the redox properties of human NADPH-cytochrome P450 reductase. Munro AW; Noble MA; Robledo L; Daff SN; Chapman SK Biochemistry; 2001 Feb; 40(7):1956-63. PubMed ID: 11329262 [TBL] [Abstract][Full Text] [Related]
19. Modeling of Anopheles minimus Mosquito NADPH-cytochrome P450 oxidoreductase (CYPOR) and mutagenesis analysis. Sarapusit S; Lertkiatmongkol P; Duangkaew P; Rongnoparut P Int J Mol Sci; 2013 Jan; 14(1):1788-801. PubMed ID: 23325047 [TBL] [Abstract][Full Text] [Related]
20. Mosquito NADPH-cytochrome P450 oxidoreductase: kinetics and role of phenylalanine amino acid substitutions at leu86 and leu219 in CYP6AA3-mediated deltamethrin metabolism. Sarapusit S; Pethuan S; Rongnoparut P Arch Insect Biochem Physiol; 2010 Apr; 73(4):232-44. PubMed ID: 20235118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]