These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 19171936)
1. The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase. Sato I; Shimizu M; Hoshino T; Takaya N J Biol Chem; 2009 Mar; 284(12):8042-53. PubMed ID: 19171936 [TBL] [Abstract][Full Text] [Related]
2. Study on the glutathione metabolism of the filamentous fungus Aspergillus nidulans. Bakti F; Király A; Orosz E; Miskei M; Emri T; Leiter É; Pócsi I Acta Microbiol Immunol Hung; 2017 Sep; 64(3):255-272. PubMed ID: 28263103 [TBL] [Abstract][Full Text] [Related]
3. The DUG Pathway Governs Degradation of Intracellular Glutathione in Aspergillus nidulans. Gila BC; Moon H; Antal K; Hajdu M; Kovács R; Jónás AP; Pusztahelyi T; Yu JH; Pócsi I; Emri T Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33637571 [TBL] [Abstract][Full Text] [Related]
4. Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Long LK; Yang J; An Y; Liu G Fungal Genet Biol; 2012 Feb; 49(2):114-22. PubMed ID: 22202809 [TBL] [Abstract][Full Text] [Related]
5. A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Fraser JA; Davis MA; Hynes MJ Appl Environ Microbiol; 2002 Jun; 68(6):2802-8. PubMed ID: 12039735 [TBL] [Abstract][Full Text] [Related]
6. Glutathione reductase/glutathione is responsible for cytotoxic elemental sulfur tolerance via polysulfide shuttle in fungi. Sato I; Shimatani K; Fujita K; Abe T; Shimizu M; Fujii T; Hoshino T; Takaya N J Biol Chem; 2011 Jun; 286(23):20283-91. PubMed ID: 21474441 [TBL] [Abstract][Full Text] [Related]
7. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures--linking genome-wide transcriptional changes to cellular physiology. Pócsi I; Miskei M; Karányi Z; Emri T; Ayoubi P; Pusztahelyi T; Balla G; Prade RA BMC Genomics; 2005 Dec; 6():182. PubMed ID: 16368011 [TBL] [Abstract][Full Text] [Related]
8. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Grant CM; Collinson LP; Roe JH; Dawes IW Mol Microbiol; 1996 Jul; 21(1):171-9. PubMed ID: 8843443 [TBL] [Abstract][Full Text] [Related]
9. HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Tribus M; Galehr J; Trojer P; Brosch G; Loidl P; Marx F; Haas H; Graessle S Eukaryot Cell; 2005 Oct; 4(10):1736-45. PubMed ID: 16215180 [TBL] [Abstract][Full Text] [Related]
10. Gliotoxin effects on fungal growth: mechanisms and exploitation. Carberry S; Molloy E; Hammel S; O'Keeffe G; Jones GW; Kavanagh K; Doyle S Fungal Genet Biol; 2012 Apr; 49(4):302-12. PubMed ID: 22405895 [TBL] [Abstract][Full Text] [Related]
11. Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Orejas M; MacCabe AP; Pérez González JA; Kumar S; Ramón D Mol Microbiol; 1999 Jan; 31(1):177-84. PubMed ID: 9987120 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (msrA and msrB). Soriani FM; Kress MR; Fagundes de Gouvêa P; Malavazi I; Savoldi M; Gallmetzer A; Strauss J; Goldman MH; Goldman GH Fungal Genet Biol; 2009 May; 46(5):410-7. PubMed ID: 19373970 [TBL] [Abstract][Full Text] [Related]
13. The Aspergillus nidulans Zn(II)2Cys6 transcription factor AN5673/RhaR mediates L-rhamnose utilization and the production of α-L-rhamnosidases. Pardo E; Orejas M Microb Cell Fact; 2014 Nov; 13():161. PubMed ID: 25416526 [TBL] [Abstract][Full Text] [Related]
14. Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Kulmburg P; Sequeval D; Lenouvel F; Mathieu M; Felenbok B Mol Cell Biol; 1992 May; 12(5):1932-9. PubMed ID: 1569930 [TBL] [Abstract][Full Text] [Related]
15. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Lara-Ortíz T; Riveros-Rosas H; Aguirre J Mol Microbiol; 2003 Nov; 50(4):1241-55. PubMed ID: 14622412 [TBL] [Abstract][Full Text] [Related]
16. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
17. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. Kawasaki L; Wysong D; Diamond R; Aguirre J J Bacteriol; 1997 May; 179(10):3284-92. PubMed ID: 9150225 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus. Shin KS; Park HS; Kim YH; Yu JH J Proteomics; 2013 Jul; 87():40-52. PubMed ID: 23689084 [TBL] [Abstract][Full Text] [Related]
19. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Barreto L; Garcerá A; Jansson K; Sunnerhagen P; Herrero E Eukaryot Cell; 2006 Oct; 5(10):1748-59. PubMed ID: 16936141 [TBL] [Abstract][Full Text] [Related]
20. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. Thön M; Al-Abdallah Q; Hortschansky P; Brakhage AA J Biol Chem; 2007 Sep; 282(37):27259-27269. PubMed ID: 17631497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]