These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19172588)

  • 1. Accuracy in planar cutting of bones: an ISO-based evaluation.
    Cartiaux O; Paul L; Docquier PL; Francq BG; Raucent B; Dombre E; Banse X
    Int J Med Robot; 2009 Mar; 5(1):77-84. PubMed ID: 19172588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted and robot-assisted technologies to improve bone-cutting accuracy when integrated with a freehand process using an oscillating saw.
    Cartiaux O; Paul L; Docquier PL; Raucent B; Dombre E; Banse X
    J Bone Joint Surg Am; 2010 Sep; 92(11):2076-82. PubMed ID: 20810857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted planning and navigation improves cutting accuracy during simulated bone tumor surgery of the pelvis.
    Cartiaux O; Banse X; Paul L; Francq BG; Aubin CÉ; Docquier PL
    Comput Aided Surg; 2013; 18(1-2):19-26. PubMed ID: 23176154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new methodology for the planning of single-cut corrective osteotomies of mal-aligned long bones.
    Meyer DC; Siebenrock KA; Schiele B; Gerber C
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):223-7. PubMed ID: 15621329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.
    Ortmaier T; Weiss H; Döbele S; Schreiber U
    Int J Med Robot; 2006 Dec; 2(4):350-63. PubMed ID: 17520654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo accuracy evaluation for robot assisted laser bone ablation.
    Burgner J; Müller M; Raczkowsky J; Wörn H
    Int J Med Robot; 2010 Dec; 6(4):489-500. PubMed ID: 21108494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a standard in assessment of bone cutting for total knee replacement.
    Barrera OA; Haider H; Garvin KL
    Proc Inst Mech Eng H; 2008 Jan; 222(1):63-74. PubMed ID: 18335719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved accuracy with 3D planning and patient-specific instruments during simulated pelvic bone tumor surgery.
    Cartiaux O; Paul L; Francq BG; Banse X; Docquier PL
    Ann Biomed Eng; 2014 Jan; 42(1):205-13. PubMed ID: 23963884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Including parameterization of the discrete ablation process into a planning and simulation environment for robot-assisted laser osteotomy.
    Burgner J; Kahrs LA; Raczkowsky J; Wörn H
    Stud Health Technol Inform; 2009; 142():43-8. PubMed ID: 19377111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and feasibility of frameless stereotactic and robot-assisted CT-based puncture in interventional radiology: a comparative phantom study.
    Stoffner R; Augschöll C; Widmann G; Böhler D; Bale R
    Rofo; 2009 Sep; 181(9):851-8. PubMed ID: 19517342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative microstructural analysis of bone osteotomies after cutting by computer-assisted robot-guided laser osteotome and piezoelectric osteotome: an in vivo animal study.
    Augello M; Deibel W; Nuss K; Cattin P; Jürgens P
    Lasers Med Sci; 2018 Sep; 33(7):1471-1478. PubMed ID: 29654421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted surface matching--numerical optimization and technical evaluation.
    Bächler R; Bunke H; Nolte LP
    Comput Aided Surg; 2001; 6(3):143-52. PubMed ID: 11747132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results.
    Kuttenberger JJ; Stübinger S; Waibel A; Werner M; Klasing M; Ivanenko M; Hering P; Von Rechenberg B; Sader R; Zeilhofer HF
    Photomed Laser Surg; 2008 Apr; 26(2):129-36. PubMed ID: 18341418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a standard test assembly for controlled laser studies in tissues: preliminary study on human bone material.
    Beer F; Passow H
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):024301. PubMed ID: 18315316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy assessment of surgical planning and three-dimensional-printed patient-specific guides for orthopaedic osteotomies.
    Sys G; Eykens H; Lenaerts G; Shumelinsky F; Robbrecht C; Poffyn B
    Proc Inst Mech Eng H; 2017 Jun; 231(6):499-508. PubMed ID: 28639516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistency of performance of robot-assisted surgical tasks in virtual reality.
    Suh IH; Siu KC; Mukherjee M; Monk E; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2009; 142():369-73. PubMed ID: 19377186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of the vascular interventional robot.
    Da L; Zhang D; Wang T
    Int J Med Robot; 2008 Dec; 4(4):289-94. PubMed ID: 18803340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A laboratory training and evaluation technique for computer-aided oral implant surgery.
    Widmann G; Stoffner R; Keiler M; Zangerl A; Widmann R; Puelacher W; Bale R
    Int J Med Robot; 2009 Sep; 5(3):276-83. PubMed ID: 19367613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Er:YAG laser osteotomy based on refined computer-assisted presurgical planning: first clinical experience in oral surgery.
    Stübinger S; Kober C; Zeilhofer HF; Sader R
    Photomed Laser Surg; 2007 Feb; 25(1):3-7. PubMed ID: 17352630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.