These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19172759)

  • 1. Intracistronic transcriptional polarity enhances translational repression: a new role for Rho.
    de Smit MH; Verlaan PW; van Duin J; Pleij CW
    Mol Microbiol; 2008 Sep; 69(5):1278-89. PubMed ID: 19172759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo dynamics of intracistronic transcriptional polarity.
    de Smit MH; Verlaan PW; van Duin J; Pleij CW
    J Mol Biol; 2009 Jan; 385(3):733-47. PubMed ID: 19059415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator.
    Li R; Zhang Q; Li J; Shi H
    Nucleic Acids Res; 2016 Apr; 44(6):2554-63. PubMed ID: 26602687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional stability of the lacZ transcript is sensitive towards sequence alterations immediately downstream of the ribosome binding site.
    Petersen C
    Mol Gen Genet; 1987 Aug; 209(1):179-87. PubMed ID: 3312955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7.
    Saito K; Nomura M
    J Mol Biol; 1994 Jan; 235(1):125-39. PubMed ID: 8289236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationally regulated mRNA.
    Tang CK; Draper DE
    Biochemistry; 1990 May; 29(18):4434-9. PubMed ID: 2112408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription and decay of the lac messenger: role of an intergenic terminator.
    Murakawa GJ; Kwan C; Yamashita J; Nierlich DP
    J Bacteriol; 1991 Jan; 173(1):28-36. PubMed ID: 1702782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a ribosomal protein S8/spc operon mRNA complex.
    Merianos HJ; Wang J; Moore PB
    RNA; 2004 Jun; 10(6):954-64. PubMed ID: 15146079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence.
    Chang JT; Green CB; Wolf RE
    J Bacteriol; 1995 Nov; 177(22):6560-7. PubMed ID: 7592434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rho-dependent transcriptional polarity in the ilvGMEDA operon of wild-type Escherichia coli K12.
    Wek RC; Sameshima JH; Hatfield GW
    J Biol Chem; 1987 Nov; 262(31):15256-61. PubMed ID: 2822718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential mRNA decay within the transfer operon of plasmid R1: identification and analysis of an intracistronic mRNA stabilizer.
    Koraimann G; Teferle K; Mitteregger R; Wagner S; Högenauer G
    Mol Gen Genet; 1996 Mar; 250(4):466-76. PubMed ID: 8602164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon.
    Merino E; Babitzke P; Yanofsky C
    J Bacteriol; 1995 Nov; 177(22):6362-70. PubMed ID: 7592410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NusA modulates intragenic termination by different pathways.
    Carlomagno MS; Nappo A
    Gene; 2003 Apr; 308():115-28. PubMed ID: 12711396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping contacts of the S12-S7 intercistronic region of str operon mRNA with ribosomal protein S7 of E. coli.
    Golovin A; Spiridonova V; Kopylov A
    FEBS Lett; 2006 Oct; 580(25):5858-62. PubMed ID: 17027976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codon contexts from weakly expressed genes reduce expression in vivo.
    Folley LS; Yarus M
    J Mol Biol; 1989 Oct; 209(3):359-78. PubMed ID: 2511323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic insights into the alternative translation termination by ArfA and RF2.
    Ma C; Kurita D; Li N; Chen Y; Himeno H; Gao N
    Nature; 2017 Jan; 541(7638):550-553. PubMed ID: 27906160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilised secondary structure at a ribosomal binding site enhances translational repression in E. coli.
    Brunel C; Romby P; Sacerdot C; de Smit M; Graffe M; Dondon J; van Duin J; Ehresmann B; Ehresmann C; Springer M
    J Mol Biol; 1995 Oct; 253(2):277-90. PubMed ID: 7563089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of the beta and beta' subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms.
    Dykxhoorn DM; St Pierre R; Linn T
    Mol Microbiol; 1996 Feb; 19(3):483-93. PubMed ID: 8830239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closely spaced and divergent promoters for an aminoacyl-tRNA synthetase gene and a tRNA operon in Escherichia coli. Transcriptional and post-transcriptional regulation of gltX, valU and alaW.
    Brun YV; Sanfaçon H; Breton R; Lapointe J
    J Mol Biol; 1990 Aug; 214(4):845-64. PubMed ID: 2201777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual regulation of Escherichia coli secA translation by distinct upstream elements.
    McNicholas P; Salavati R; Oliver D
    J Mol Biol; 1997 Jan; 265(2):128-41. PubMed ID: 9020977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.