BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19173002)

  • 1. Altering mucus rheology to "solidify" human mucus at the nanoscale.
    Lai SK; Wang YY; Cone R; Wirtz D; Hanes J
    PLoS One; 2009; 4(1):e4294. PubMed ID: 19173002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses.
    Lai SK; Wang YY; Hida K; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):598-603. PubMed ID: 20018745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH.
    Wang YY; Lai SK; Ensign LM; Zhong W; Cone R; Hanes J
    Biomacromolecules; 2013 Dec; 14(12):4429-35. PubMed ID: 24266646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment of human cervicovaginal mucus with pluronic F127 enhances nanoparticle penetration without compromising mucus barrier properties to herpes simplex virus.
    Ensign LM; Lai SK; Wang YY; Yang M; Mert O; Hanes J; Cone R
    Biomacromolecules; 2014 Dec; 15(12):4403-9. PubMed ID: 25347518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro- and macrorheology of mucus.
    Lai SK; Wang YY; Wirtz D; Hanes J
    Adv Drug Deliv Rev; 2009 Feb; 61(2):86-100. PubMed ID: 19166889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure.
    Wang YY; Lai SK; So C; Schneider C; Cone R; Hanes J
    PLoS One; 2011; 6(6):e21547. PubMed ID: 21738703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis.
    Hoang T; Toler E; DeLong K; Mafunda NA; Bloom SM; Zierden HC; Moench TR; Coleman JS; Hanes J; Kwon DS; Lai SK; Cone RA; Ensign LM
    PLoS Pathog; 2020 Jan; 16(1):e1008236. PubMed ID: 31971984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota.
    Nunn KL; Wang YY; Harit D; Humphrys MS; Ma B; Cone R; Ravel J; Lai SK
    mBio; 2015 Oct; 6(5):e01084-15. PubMed ID: 26443453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease.
    Hill DB; Vasquez PA; Mellnik J; McKinley SA; Vose A; Mu F; Henderson AG; Donaldson SH; Alexis NE; Boucher RC; Forest MG
    PLoS One; 2014; 9(2):e87681. PubMed ID: 24558372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Herpes simplex virus-binding IgG traps HSV in human cervicovaginal mucus across the menstrual cycle and diverse vaginal microbial composition.
    Schroeder HA; Nunn KL; Schaefer A; Henry CE; Lam F; Pauly MH; Whaley KJ; Zeitlin L; Humphrys MS; Ravel J; Lai SK
    Mucosal Immunol; 2018 Sep; 11(5):1477-1486. PubMed ID: 29988116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals.
    Schaefer A; Yang B; Schroeder HA; Harit D; Humphry MS; Ravel J; Lai SK
    Acta Biomater; 2023 Oct; 169():387-397. PubMed ID: 37499728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cervical mucus properties stratify risk for preterm birth.
    Critchfield AS; Yao G; Jaishankar A; Friedlander RS; Lieleg O; Doyle PS; McKinley G; House M; Ribbeck K
    PLoS One; 2013; 8(8):e69528. PubMed ID: 23936335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Virion Collisions in Cervicovaginal Mucus Reveals Limits on Agglutination as the Protective Mechanism of Secretory Immunoglobulin A.
    Chen A; McKinley SA; Shi F; Wang S; Mucha PJ; Harit D; Forest MG; Lai SK
    PLoS One; 2015; 10(7):e0131351. PubMed ID: 26132216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological properties of synthetic mucus for airway clearance.
    Lafforgue O; Seyssiecq I; Poncet S; Favier J
    J Biomed Mater Res A; 2018 Feb; 106(2):386-396. PubMed ID: 28960857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Barrier properties of mucus.
    Cone RA
    Adv Drug Deliv Rev; 2009 Feb; 61(2):75-85. PubMed ID: 19135107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mucus from human bronchial epithelial cultures: rheology and adhesion across length scales.
    Jory M; Donnarumma D; Blanc C; Bellouma K; Fort A; Vachier I; Casanellas L; Bourdin A; Massiera G
    Interface Focus; 2022 Dec; 12(6):20220028. PubMed ID: 36330325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties of mucus and their impact on transmucosal drug delivery.
    Leal J; Smyth HDC; Ghosh D
    Int J Pharm; 2017 Oct; 532(1):555-572. PubMed ID: 28917986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Gel-forming mucins structure governs mucus gels viscoelasticity].
    Demouveaux B; Gouyer V; Magnien M; Plet S; Gottrand F; Narita T; Desseyn JL
    Med Sci (Paris); 2018 Oct; 34(10):806-812. PubMed ID: 30451674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.