These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 191733)

  • 1. Covalent immobilization of adenylate kinase and acetate kinase in a polyacrylamide gel: enzymes for ATP regeneration.
    Whitesides GM; Lamotte A; Adalsteinsson O; Colton CK
    Methods Enzymol; 1976; 44():887-97. PubMed ID: 191733
    [No Abstract]   [Full Text] [Related]  

  • 2. Immobilized polyphosphate kinase: preparation, properties, and potential for use in adenosine 5'-triphosphate regeneration.
    Hoffman RC; Wyman PL; Smith LE; Nolt CL; Conley JL; Hevel JM; Warren JP; Reiner GA; Moe OA
    Biotechnol Appl Biochem; 1988 Apr; 10(2):107-17. PubMed ID: 2838045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-linear dynamic phenomena in open reconstituted enzyme systems.
    Eschrich K; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1979; 38(11-12):K25-33. PubMed ID: 233181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous ATP regeneration process with stable acetate kinase.
    Nakajima H; Nagata K; Kondo H; Imahori K
    J Appl Biochem; 1984; 6(1-2):19-28. PubMed ID: 6092323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous regeneration of ATP for enzymatic syntheses.
    Berke W; Morr M; Wandrey C; Kula MR
    Ann N Y Acad Sci; 1984; 434():257-8. PubMed ID: 6098208
    [No Abstract]   [Full Text] [Related]  

  • 6. Construction of a system for the regeneration of adenosine 5'-triphosphate, which supplies energy to bioreactor.
    Kondo H; Tomioka I; Nakajima H; Imahori K
    J Appl Biochem; 1984; 6(1-2):29-38. PubMed ID: 6490579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on adenosine triphosphate transphosphorylases. Isolation and several properties of the crystalline calf ATP-AMP transphosphorylases (adenylate kinases) from muscle and liver and some observations on the rabbit muscle adenylate kinase.
    Kuby SA; Hamada M; Gerber D; Tsai WC; Jacobs HK; Cress MC; Chua GK; Fleming G; Wu LH; Fischer AH; Frischat A; Maland L
    Arch Biochem Biophys; 1978 Apr; 187(1):34-52. PubMed ID: 207226
    [No Abstract]   [Full Text] [Related]  

  • 8. Immobilization of NAD kinase.
    Ji XS; Li HX; Yuan ZY; Liu SH
    Ann N Y Acad Sci; 1984; 434():264-6. PubMed ID: 6098210
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on adenosine triphosphate transphosphorylases. XIII. Kinetic properties of the crystalline rabbit muscle ATP-AMP transphorphorylase (adenylate kinase) and a comparison with the crystalline calf muscle and liver adenylate kinases.
    Hamada M; Kuby SA
    Arch Biochem Biophys; 1978 Oct; 190(2):772-9. PubMed ID: 214039
    [No Abstract]   [Full Text] [Related]  

  • 10. Muscle adenylate kinase catalyzes adenosine 5'-tetraphosphate synthesis from ATP and ADP.
    Kupriyanov VV; Ferretti JA; Balaban RS
    Biochim Biophys Acta; 1986 Jan; 869(1):107-11. PubMed ID: 3002476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-stabilization of the energy charge in a reconstituted enzyme system containing phosphofructokinase.
    Schellenberger W; Eschrich K; Hofmann E
    Eur J Biochem; 1981 Aug; 118(2):309-14. PubMed ID: 6269852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches to kinetic studies on metal-activated enzymes.
    Morrison JF
    Methods Enzymol; 1979; 63():257-94. PubMed ID: 228154
    [No Abstract]   [Full Text] [Related]  

  • 13. Gel entrapment of enzymes in cross-linked prepolymerized polyacrylamide-hydrazide.
    Freeman A; Blank T; Haimovich B
    Ann N Y Acad Sci; 1983; 413():557-9. PubMed ID: 6584073
    [No Abstract]   [Full Text] [Related]  

  • 14. Reconstitution of ATP synthetase on a collagen membrane that can synthesize ATP using a pH gradient.
    Blanchy B; Godinot C; Gautheron DC
    Methods Enzymol; 1979; 55():742-8. PubMed ID: 37408
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties of adenylate kinase after modification of Arg-97 by phenylglyoxal.
    Berghäuser J; Schirmer RH
    Biochim Biophys Acta; 1978 Dec; 537(2):428-35. PubMed ID: 215219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of modulators and substrates binding to rat liver adenylate kinase.
    Pradhan TK; Criss WE
    Enzyme; 1977; 22(4):283-7. PubMed ID: 195804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of adenylate kinase. Does adenosine 5'-triphosphate bind to the adenosine 5'-monophosphate site?
    Shyy YJ; Tian G; Tsai MD
    Biochemistry; 1987 Oct; 26(20):6411-5. PubMed ID: 2827727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Adenylate kinase and GDP-kinase activity of rod outer segments in the frog retina. Possible functional role of the T beta subunit of transducin].
    Tishchenkov VG; Orlov NIa
    Mol Biol (Mosk); 1984; 18(3):776-85. PubMed ID: 6088968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic activities in thylakoid membranes, which form medium [32P]NDP and [32P]ATP from 32Pi. Polynucleotide phosphorylase and adenylate kinase.
    Feldman RI; Sigman DS
    Eur J Biochem; 1984 Sep; 143(3):583-8. PubMed ID: 6090133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of adenylate-kinase activity in hepatic microsomes. Relevance to Ca2+ uptake.
    Zhang GH; Kraus-Friedmann N
    Biochem Int; 1989 Aug; 19(2):333-43. PubMed ID: 2554909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.