These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 19173411)

  • 1. Sex differences in distortion-product and transient-evoked otoacoustic emissions compared.
    McFadden D; Martin GK; Stagner BB; Maloney MM
    J Acoust Soc Am; 2009 Jan; 125(1):239-46. PubMed ID: 19173411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Moulin A; Collet L; Veuillet E; Morgon A
    Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears.
    Hauser R; Probst R; Harris FP
    Hear Res; 1993 Sep; 69(1-2):133-45. PubMed ID: 8226333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Survey of U.S. Audiologists' Usage of and Attitudes Toward Otoacoustic Emissions.
    Mertes IB; Marquess A
    Am J Audiol; 2023 Jun; 32(2):417-431. PubMed ID: 37099746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous otoacoustic emissions in schoolchildren.
    Jedrzejczak WW; Kochanek K; Pilka E; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2016 Oct; 89():67-71. PubMed ID: 27619031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlations between otoacoustic emissions and performance in common psychoacoustical tasks.
    McFadden D; Pasanen EG; Maloney MM; Leshikar EM; Pho MH
    J Acoust Soc Am; 2018 Apr; 143(4):2355. PubMed ID: 29716248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otoacoustic Emissions in Smoking and Nonsmoking Young Adults.
    Jedrzejczak WW; Koziel M; Kochanek K; Skarzynski H
    Clin Exp Otorhinolaryngol; 2015 Dec; 8(4):303-11. PubMed ID: 26622946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Otoacoustic emissions in young adults: Effects of blood group.
    Chow KT; McPherson B; Fuente A
    Hear Res; 2016 Mar; 333():194-200. PubMed ID: 26375628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects.
    Gorga MP; Neely ST; Bergman BM; Beauchaine KL; Kaminski JR; Peters J; Schulte L; Jesteadt W
    J Acoust Soc Am; 1993 Nov; 94(5):2639-48. PubMed ID: 8270740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-evoked and 2F1-F2 distortion product oto-acoustic emissions in dogs: preliminary findings.
    Sockalingam R; Filippich L; Sommerlad S; Murdoch B; Charles B
    Audiol Neurootol; 1998; 3(6):373-85. PubMed ID: 9732131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelations between psychoacoustical tuning curves and spontaneous and evoked otoacoustic emissions.
    Micheyl C; Collet L
    Scand Audiol; 1994; 23(3):171-8. PubMed ID: 7997834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of transiently evoked and distortion-product otoacoustic emissions in humans.
    Probst R; Harris FP
    Prog Brain Res; 1993; 97():91-9. PubMed ID: 8234771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirp-evoked otoacoustic emissions in children.
    Jedrzejczak WW; Kochanek K; Sliwa L; Pilka E; Piotrowska A; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2013 Jan; 77(1):101-6. PubMed ID: 23116905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tone burst evoked otoacoustic emissions in different age-groups of schoolchildren.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Olszewski L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2015 Aug; 79(8):1310-5. PubMed ID: 26092548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cochlear function in patients with tinnitus using spontaneous and transitory evoked otoacoustic emissions.
    Santaolalla Montoya F; Ibargüen AM; del Rey AS; Fernández JM
    J Otolaryngol; 2007 Oct; 36(5):296-302. PubMed ID: 17963669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of spontaneous otoacoustic emissions on distortion product otoacoustic emission amplitudes.
    Ozturan O; Oysu C
    Hear Res; 1999 Jan; 127(1-2):129-36. PubMed ID: 9925024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.