These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
4. Large-area synthesis of carbon nanofibres at room temperature. Boskovic BO; Stolojan V; Khan RU; Haq S; Silva SR Nat Mater; 2002 Nov; 1(3):165-8. PubMed ID: 12618804 [TBL] [Abstract][Full Text] [Related]
5. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Ouyang Y; Chen L; Liu QX; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation. Jiang J; Sandler SI Langmuir; 2004 Dec; 20(25):10910-8. PubMed ID: 15568840 [TBL] [Abstract][Full Text] [Related]
7. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes. Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106 [TBL] [Abstract][Full Text] [Related]
8. The influence of the carbon nanotube on the structural and dynamical properties of cholesterol cluster. Raczyński P; Dawid A; Sokół M; Gburski Z Biomol Eng; 2007 Nov; 24(5):572-6. PubMed ID: 17977066 [TBL] [Abstract][Full Text] [Related]
9. Computational design and multiscale modeling of a nanoactuator using DNA actuation. Hamdi M Nanotechnology; 2009 Dec; 20(48):485501. PubMed ID: 19880974 [TBL] [Abstract][Full Text] [Related]
10. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process. Elliott JA; Hamm M; Shibuta Y J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534 [TBL] [Abstract][Full Text] [Related]
11. How does a carbon nanotube grow? An in situ investigation on the cap evolution. Jin C; Suenaga K; Iijima S ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345 [TBL] [Abstract][Full Text] [Related]
12. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes. Cruz-Silva E; Cullen DA; Gu L; Romo-Herrera JM; Muñoz-Sandoval E; López-Urías F; Sumpter BG; Meunier V; Charlier JC; Smith DJ; Terrones H; Terrones M ACS Nano; 2008 Mar; 2(3):441-8. PubMed ID: 19206568 [TBL] [Abstract][Full Text] [Related]
13. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
14. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations. Ohta Y; Okamoto Y; Irle S; Morokuma K ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312 [TBL] [Abstract][Full Text] [Related]
15. Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. Nath DC; Sahajwalla V J Hazard Mater; 2011 Aug; 192(2):691-7. PubMed ID: 21683524 [TBL] [Abstract][Full Text] [Related]
17. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370 [TBL] [Abstract][Full Text] [Related]
18. Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride. Vohs JK; Brege JJ; Raymond JE; Brown AE; Williams GL; Fahlman BD J Am Chem Soc; 2004 Aug; 126(32):9936-7. PubMed ID: 15303864 [TBL] [Abstract][Full Text] [Related]
19. Changes in single-walled carbon nanotube chirality during growth and regrowth. Zhu W; Rosén A; Bolton K J Chem Phys; 2008 Mar; 128(12):124708. PubMed ID: 18376961 [TBL] [Abstract][Full Text] [Related]
20. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Kim WY; Kim KS J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]