BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19173633)

  • 1. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels.
    Varghese OK; Paulose M; Latempa TJ; Grimes CA
    Nano Lett; 2009 Feb; 9(2):731-7. PubMed ID: 19173633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.
    Park H; Ou HH; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2015 May; 119(19):4658-66. PubMed ID: 25611343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel.
    He Y; Zhang L; Teng B; Fan M
    Environ Sci Technol; 2015 Jan; 49(1):649-56. PubMed ID: 25485763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects.
    Tu W; Zhou Y; Zou Z
    Adv Mater; 2014 Jul; 26(27):4607-26. PubMed ID: 24861670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell.
    LaTempa TJ; Rani S; Bao N; Grimes CA
    Nanoscale; 2012 Apr; 4(7):2245-50. PubMed ID: 22373931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO
    Zhang L; Kong G; Meng Y; Tian J; Zhang L; Wan S; Lin J; Wang Y
    ChemSusChem; 2017 Dec; 10(23):4709-4714. PubMed ID: 29045065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
    Falter C; Batteiger V; Sizmann A
    Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced charge separation of rutile TiO2 nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO2 to fuels.
    Wu J; Lu H; Zhang X; Raziq F; Qu Y; Jing L
    Chem Commun (Camb); 2016 Apr; 52(28):5027-9. PubMed ID: 26984764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts.
    Neațu S; Maciá-Agulló JA; Garcia H
    Int J Mol Sci; 2014 Mar; 15(4):5246-62. PubMed ID: 24670477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons.
    Roy SC; Varghese OK; Paulose M; Grimes CA
    ACS Nano; 2010 Mar; 4(3):1259-78. PubMed ID: 20141175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Carbon-Neutral CO2 Conversion to Hydrocarbons.
    Mattia D; Jones MD; O'Byrne JP; Griffiths OG; Owen RE; Sackville E; McManus M; Plucinski P
    ChemSusChem; 2015 Dec; 8(23):4064-72. PubMed ID: 26564267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.
    Cheng J; Zhang M; Wu G; Wang X; Zhou J; Cen K
    Environ Sci Technol; 2014 Jun; 48(12):7076-84. PubMed ID: 24846604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light.
    Wang D; Yu Y; Zhang Z; Fang H; Chen J; He Z; Song S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18369-78. PubMed ID: 27282369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.
    Li Q; Shang JK
    Environ Sci Technol; 2009 Dec; 43(23):8923-9. PubMed ID: 19943667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device.
    Fenwick AQ; Gregoire JM; Luca OR
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):47-57. PubMed ID: 25596654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.
    Shown I; Hsu HC; Chang YC; Lin CH; Roy PK; Ganguly A; Wang CH; Chang JK; Wu CI; Chen LC; Chen KH
    Nano Lett; 2014 Nov; 14(11):6097-103. PubMed ID: 25354234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Photoelectrocatalytic degradation of bisphenol A in water by Fe doped-TiO2 nanotube arrays under simulated solar light irradiation].
    Xiang GL; Yu ZB; Chen Y; Xu TZ; Peng ZB; Liu YX
    Huan Jing Ke Xue; 2015 Feb; 36(2):568-75. PubMed ID: 26031084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.