These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 19173738)
1. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Ezhil M; Vedam S; Balter P; Choi B; Mirkovic D; Starkschall G; Chang JY Radiat Oncol; 2009 Jan; 4():4. PubMed ID: 19173738 [TBL] [Abstract][Full Text] [Related]
2. Automated gross tumor volume contour generation for large-scale analysis of early-stage lung cancer patients planned with 4D-CT. Davey A; van Herk M; Faivre-Finn C; Brown S; McWilliam A Med Phys; 2021 Feb; 48(2):724-732. PubMed ID: 33290579 [TBL] [Abstract][Full Text] [Related]
3. [Comparison of three methods to delineate internal gross target volume of the primary hepatocarcinoma based on four-dimensional CT simulation images]. Xing J; Li JB; Zhang YJ; Li FX; Fan TY; Xu M; Shang DP; Han JJ Zhonghua Zhong Liu Za Zhi; 2012 Feb; 34(2):122-8. PubMed ID: 22780930 [TBL] [Abstract][Full Text] [Related]
4. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and (18) F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer. Duan Y; Li J; Zhang Y; Wang W; Sun X; Fan T; Shao Q; Xu M; Guo Y; Shang D J Med Imaging Radiat Oncol; 2015 Oct; 59(5):623-30. PubMed ID: 25754243 [TBL] [Abstract][Full Text] [Related]
5. Effect of abdominal compression on target movement and extension of the external boundary of peripheral lung tumours treated with stereotactic radiotherapy based on four-dimensional computed tomography. Qi Y; Li J; Zhang Y; Shao Q; Liu X; Li F; Wang J; Li Z; Wang W Radiat Oncol; 2021 Sep; 16(1):173. PubMed ID: 34493303 [TBL] [Abstract][Full Text] [Related]
6. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer. Sloth Møller D; Knap MM; Nyeng TB; Khalil AA; Holt MI; Kandi M; Hoffmann L Acta Oncol; 2017 Nov; 56(11):1604-1609. PubMed ID: 28885090 [TBL] [Abstract][Full Text] [Related]
7. Thoracic target volume delineation using various maximum-intensity projection computed tomography image sets for radiotherapy treatment planning. Zamora DA; Riegel AC; Sun X; Balter P; Starkschall G; Mawlawi O; Pan T Med Phys; 2010 Nov; 37(11):5811-20. PubMed ID: 21158293 [TBL] [Abstract][Full Text] [Related]
8. Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients. Knap MM; Hoffmann L; Nordsmark M; Vestergaard A Acta Oncol; 2010 Oct; 49(7):1077-84. PubMed ID: 20831499 [TBL] [Abstract][Full Text] [Related]
9. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression. Han C; Sampath S; Schultheisss TE; Wong JYC Med Dosim; 2017 Summer; 42(2):116-121. PubMed ID: 28433482 [TBL] [Abstract][Full Text] [Related]
10. Geometrical differences in gross target volumes between 3DCT and 4DCT imaging in radiotherapy for non-small-cell lung cancer. Li F; Li J; Zhang Y; Xu M; Shang D; Fan T; Liu T; Shao Q J Radiat Res; 2013 Sep; 54(5):950-6. PubMed ID: 23564841 [TBL] [Abstract][Full Text] [Related]
11. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer. Guo Y; Li J; Wang W; Zhang Y; Wang J; Duan Y; Shang D; Fu Z Dis Esophagus; 2014; 27(8):744-50. PubMed ID: 24915760 [TBL] [Abstract][Full Text] [Related]
12. Reconstitution of internal target volumes by combining four-dimensional computed tomography and a modified slow computed tomography scan in stereotactic body radiotherapy planning for lung cancer. Jang SS; Huh GJ; Park SY; Yang PS; Chung HN; Seo JH; Park JC; Yang YJ; Cho EY Radiat Oncol; 2014 May; 9():106. PubMed ID: 24885768 [TBL] [Abstract][Full Text] [Related]
13. Feasibility and potential benefits of defining the internal gross tumor volume of hepatocellular carcinoma using contrast-enhanced 4D CT images obtained by deformable registration. Xu H; Gong G; Wei H; Chen L; Chen J; Lu J; Liu T; Zhu J; Yin Y Radiat Oncol; 2014 Oct; 9():221. PubMed ID: 25319176 [TBL] [Abstract][Full Text] [Related]
14. An evaluation of an automated 4D-CT contour propagation tool to define an internal gross tumour volume for lung cancer radiotherapy. Gaede S; Olsthoorn J; Louie AV; Palma D; Yu E; Yaremko B; Ahmad B; Chen J; Bzdusek K; Rodrigues G Radiother Oncol; 2011 Nov; 101(2):322-8. PubMed ID: 21981879 [TBL] [Abstract][Full Text] [Related]
15. Contour propagation for lung tumor delineation in 4D-CT using tensor-product surface of uniform and non-uniform closed cubic B-splines. Jin R; Liu Y; Chen M; Zhang S; Song E Phys Med Biol; 2017 Dec; 63(1):015017. PubMed ID: 29045239 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. Nestle U; Kremp S; Schaefer-Schuler A; Sebastian-Welsch C; Hellwig D; Rübe C; Kirsch CM J Nucl Med; 2005 Aug; 46(8):1342-8. PubMed ID: 16085592 [TBL] [Abstract][Full Text] [Related]
17. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non-Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage? Ahmed N; Venkataraman S; Johnson K; Sutherland K; Loewen SK Clin Med Insights Oncol; 2017; 11():1179554917698461. PubMed ID: 28469512 [TBL] [Abstract][Full Text] [Related]
18. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications. Johnson C; Price G; Khalifa J; Faivre-Finn C; Dekker A; Moore C; van Herk M Radiother Oncol; 2018 Feb; 126(2):355-361. PubMed ID: 29223683 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of the delivered dose based on cone-beam CT and deformable image registration for non-small cell lung cancer treated with hypofractionated radiotherapy. Wang B; Wang DQ; Lin MS; Lu SP; Zhang J; Chen L; Li QW; Cheng ZK; Liu FJ; Guo JY; Liu H; Qiu B BMC Cancer; 2020 Nov; 20(1):1112. PubMed ID: 33198676 [TBL] [Abstract][Full Text] [Related]
20. An assessment of cone beam CT in the adaptive radiotherapy planning process for non-small-cell lung cancer patients. Duffton A; Harrow S; Lamb C; McJury M Br J Radiol; 2016 Jun; 89(1062):20150492. PubMed ID: 27052681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]