These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Rod and cone photoreceptors: molecular basis of the difference in their physiology. Kawamura S; Tachibanaki S Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):369-77. PubMed ID: 18514002 [TBL] [Abstract][Full Text] [Related]
4. [Influence of weak magnetic fields on fish retina photoreceptors]. Maksimovich AA; Zagal'skaia EO Biofizika; 2007; 52(5):916-23. PubMed ID: 17969928 [TBL] [Abstract][Full Text] [Related]
5. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses. Tachibanaki S; Tsushima S; Kawamura S Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584 [TBL] [Abstract][Full Text] [Related]
6. The dangers of seeing light in the dark. Remé CE; Wenzel A Nat Genet; 2003 Oct; 35(2):115-6. PubMed ID: 14517534 [No Abstract] [Full Text] [Related]
7. Mouse cone photoresponses obtained with electroretinogram from the isolated retina. Heikkinen H; Nymark S; Koskelainen A Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210 [TBL] [Abstract][Full Text] [Related]
9. Interaction between rod and cone inputs in mixed-input bipolar cells in goldfish retina. Joselevitch C; Kamermans M J Neurosci Res; 2007 May; 85(7):1579-91. PubMed ID: 17342779 [TBL] [Abstract][Full Text] [Related]
10. DISCO! Dissociation of cone opsins: the fast and noisy life of cones explained. Travis GH Neuron; 2005 Jun; 46(6):840-2. PubMed ID: 15953411 [TBL] [Abstract][Full Text] [Related]
11. Rod and cone function in coneless mice. Williams GA; Daigle KA; Jacobs GH Vis Neurosci; 2005; 22(6):807-16. PubMed ID: 16469189 [TBL] [Abstract][Full Text] [Related]
12. The energetic cost of photoreception in retinal rods of mammals. Demontis GC; Longoni B; Gargini C; Cervetto L Arch Ital Biol; 1997 Mar; 135(2):95-109. PubMed ID: 9101022 [TBL] [Abstract][Full Text] [Related]
13. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Solovei I; Kreysing M; Lanctôt C; Kösem S; Peichl L; Cremer T; Guck J; Joffe B Cell; 2009 Apr; 137(2):356-68. PubMed ID: 19379699 [TBL] [Abstract][Full Text] [Related]
14. Why are rods more sensitive than cones? Ingram NT; Sampath AP; Fain GL J Physiol; 2016 Oct; 594(19):5415-26. PubMed ID: 27218707 [TBL] [Abstract][Full Text] [Related]
15. Guest editorial: Shedding new light on the twilight zone. Walkey HC; Barbur JL Ophthalmic Physiol Opt; 2006 May; 26(3):223-4. PubMed ID: 16684148 [No Abstract] [Full Text] [Related]
16. Neuronal coupling in rod-signal pathways of the retina. Vaney DI Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):267-73. PubMed ID: 9040458 [No Abstract] [Full Text] [Related]
17. Light adaptation and the evolution of vertebrate photoreceptors. Morshedian A; Fain GL J Physiol; 2017 Jul; 595(14):4947-4960. PubMed ID: 28488783 [TBL] [Abstract][Full Text] [Related]
18. [Physiology of the visual retinal signal: From phototransduction to the visual cycle]. Salesse C J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721 [TBL] [Abstract][Full Text] [Related]
19. Role of visual pigment properties in rod and cone phototransduction. Kefalov V; Fu Y; Marsh-Armstrong N; Yau KW Nature; 2003 Oct; 425(6957):526-31. PubMed ID: 14523449 [TBL] [Abstract][Full Text] [Related]
20. Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Stockman A; Sharpe LT Ophthalmic Physiol Opt; 2006 May; 26(3):225-39. PubMed ID: 16684149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]