These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 19174172)
1. Metabolic Engineering with power-law and linear-logarithmic systems. Marin-Sanguino A; Torres NV; Mendoza ER; Oesterhelt D Math Biosci; 2009 Mar; 218(1):50-8. PubMed ID: 19174172 [TBL] [Abstract][Full Text] [Related]
2. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling. Guebel DV In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021 [TBL] [Abstract][Full Text] [Related]
3. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441 [TBL] [Abstract][Full Text] [Related]
4. Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae. Vera J; de Atauri P; Cascante M; Torres NV Biotechnol Bioeng; 2003 Aug; 83(3):335-43. PubMed ID: 12783489 [TBL] [Abstract][Full Text] [Related]
9. Power-law models of signal transduction pathways. Vera J; Balsa-Canto E; Wellstead P; Banga JR; Wolkenhauer O Cell Signal; 2007 Jul; 19(7):1531-41. PubMed ID: 17399948 [TBL] [Abstract][Full Text] [Related]
10. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles. Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504 [TBL] [Abstract][Full Text] [Related]
11. Modelling, steady state analysis and optimization of the catalytic efficiency of the triosephosphate isomerase. Marín-Sanguino A; Torres NV Bull Math Biol; 2002 Mar; 64(2):301-26. PubMed ID: 11926119 [TBL] [Abstract][Full Text] [Related]
12. Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus A modelling and optimization approach. Hormiga JA; Vera J; Frías I; Torres Darias NV J Biotechnol; 2008 Oct; 137(1-4):50-8. PubMed ID: 18694789 [TBL] [Abstract][Full Text] [Related]
13. Structural identifiability of a model for the acetic acid fermentation process. Jiménez-Hornero JE; Santos-Dueñas IM; Garci A-Garci A I Math Biosci; 2008 Dec; 216(2):154-62. PubMed ID: 18848572 [TBL] [Abstract][Full Text] [Related]
14. Metabolic flux analysis in plants: coping with complexity. Allen DK; Libourel IG; Shachar-Hill Y Plant Cell Environ; 2009 Sep; 32(9):1241-57. PubMed ID: 19422611 [TBL] [Abstract][Full Text] [Related]
15. Metabolic pathways reconstruction by frequency and amplitude response to forced glycolytic oscillations in yeast. Zimmerman WB Biotechnol Bioeng; 2005 Oct; 92(1):91-116. PubMed ID: 16003780 [TBL] [Abstract][Full Text] [Related]
16. Modelling metabolic networks using power-laws and S-systems. Voit EO Essays Biochem; 2008; 45():29-40. PubMed ID: 18793121 [TBL] [Abstract][Full Text] [Related]
17. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models. Pozo C; Marín-Sanguino A; Alves R; Guillén-Gosálbez G; Jiménez L; Sorribas A BMC Syst Biol; 2011 Aug; 5():137. PubMed ID: 21867520 [TBL] [Abstract][Full Text] [Related]
18. Flux duality in nonlinear GMA systems: implications for metabolic engineering. Marin-Sanguino A; Mendoza ER; Voit EO J Biotechnol; 2010 Sep; 149(3):166-72. PubMed ID: 20015458 [TBL] [Abstract][Full Text] [Related]
19. Yield optimization of regulated metabolic systems using deterministic branch-and-reduce methods. Polisetty PK; Gatzke EP; Voit EO Biotechnol Bioeng; 2008 Apr; 99(5):1154-69. PubMed ID: 18064703 [TBL] [Abstract][Full Text] [Related]