These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19174172)

  • 1. Metabolic Engineering with power-law and linear-logarithmic systems.
    Marin-Sanguino A; Torres NV; Mendoza ER; Oesterhelt D
    Math Biosci; 2009 Mar; 218(1):50-8. PubMed ID: 19174172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations.
    Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R
    Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae.
    Vera J; de Atauri P; Cascante M; Torres NV
    Biotechnol Bioeng; 2003 Aug; 83(3):335-43. PubMed ID: 12783489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated piecewise power-law modeling of biological systems.
    Machina A; Ponosov A; Voit EO
    J Biotechnol; 2010 Sep; 149(3):154-65. PubMed ID: 20060428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllability of non-linear biochemical systems.
    Ervadi-Radhakrishnan A; Voit EO
    Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximative kinetic formats used in metabolic network modeling.
    Heijnen JJ
    Biotechnol Bioeng; 2005 Sep; 91(5):534-45. PubMed ID: 16003779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power-law models of signal transduction pathways.
    Vera J; Balsa-Canto E; Wellstead P; Banga JR; Wolkenhauer O
    Cell Signal; 2007 Jul; 19(7):1531-41. PubMed ID: 17399948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling, steady state analysis and optimization of the catalytic efficiency of the triosephosphate isomerase.
    Marín-Sanguino A; Torres NV
    Bull Math Biol; 2002 Mar; 64(2):301-26. PubMed ID: 11926119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus A modelling and optimization approach.
    Hormiga JA; Vera J; Frías I; Torres Darias NV
    J Biotechnol; 2008 Oct; 137(1-4):50-8. PubMed ID: 18694789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural identifiability of a model for the acetic acid fermentation process.
    Jiménez-Hornero JE; Santos-Dueñas IM; Garci A-Garci A I
    Math Biosci; 2008 Dec; 216(2):154-62. PubMed ID: 18848572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic flux analysis in plants: coping with complexity.
    Allen DK; Libourel IG; Shachar-Hill Y
    Plant Cell Environ; 2009 Sep; 32(9):1241-57. PubMed ID: 19422611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathways reconstruction by frequency and amplitude response to forced glycolytic oscillations in yeast.
    Zimmerman WB
    Biotechnol Bioeng; 2005 Oct; 92(1):91-116. PubMed ID: 16003780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling metabolic networks using power-laws and S-systems.
    Voit EO
    Essays Biochem; 2008; 45():29-40. PubMed ID: 18793121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flux duality in nonlinear GMA systems: implications for metabolic engineering.
    Marin-Sanguino A; Mendoza ER; Voit EO
    J Biotechnol; 2010 Sep; 149(3):166-72. PubMed ID: 20015458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yield optimization of regulated metabolic systems using deterministic branch-and-reduce methods.
    Polisetty PK; Gatzke EP; Voit EO
    Biotechnol Bioeng; 2008 Apr; 99(5):1154-69. PubMed ID: 18064703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematics of organizationally complex systems.
    Savageau MA
    Biomed Biochim Acta; 1985; 44(6):839-44. PubMed ID: 4038284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.