These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19174345)

  • 1. A real-time compliance mapping system using standard endoscopic surgical forceps.
    Fakhry M; Bello F; Hanna GB
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1245-53. PubMed ID: 19174345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing bending beam transducer design and statistical algorithms to develop a clinical real time tissue compliance mapping system.
    Fakhry M; Bello F; Hanna GB
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3064-8. PubMed ID: 18002641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for flexible tools used in minimally invasive medical virtual environments.
    Soler F; Luzon MV; Pop SR; Hughes CJ; John NW; Torres JC
    Stud Health Technol Inform; 2011; 163():594-8. PubMed ID: 21335863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spring: a general framework for collaborative, real-time surgical simulation.
    Montgomery K; Bruyns C; Brown J; Sorkin S; Mazzella F; Thonier G; Tellier A; Lerman B; Menon A
    Stud Health Technol Inform; 2002; 85():296-303. PubMed ID: 15458105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-assisted total hip arthroplasty: coding the next generation of navigation systems for orthopedic surgery.
    Renkawitz T; Tingart M; Grifka J; Sendtner E; Kalteis T
    Expert Rev Med Devices; 2009 Sep; 6(5):507-14. PubMed ID: 19751123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cyber-physical management system for delivering and monitoring surgical instruments in the OR.
    Li YT; Jacob M; Akingba G; Wachs JP
    Surg Innov; 2013 Aug; 20(4):377-84. PubMed ID: 23037804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of handle design on the surgeon's upper limb movements, muscle recruitment, and fatigue during endoscopic suturing.
    Emam TA; Frank TG; Hanna GB; Cuschieri A
    Surg Endosc; 2001 Jul; 15(7):667-72. PubMed ID: 11591965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of rotational optical encoders for dial sensing in the Virtual translumenal Endoscopic Surgical Trainer (VTEST.
    Dargar S; Sankaranarayanan G; De S
    Stud Health Technol Inform; 2013; 184():103-5. PubMed ID: 23400138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding the surgical gesture using an electro-tactile stimulus array on the tongue: a feasibility study.
    Robineau F; Boy F; Orliaguet JP; Demongeot J; Payan Y
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):711-7. PubMed ID: 17405378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Methods of resolution for haptic assistance during catheterization].
    Kern TA; Herrmann J; Klages S; Meiss T; Werthschützky R
    Biomed Tech (Berl); 2005; 50(1-2):8-13. PubMed ID: 15792195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Computer-navigated surgery].
    Jurkiewicz D; Rapiejko P
    Pol Merkur Lekarski; 2005 Apr; 18(106):367-71. PubMed ID: 16161912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated force-position tactile sensor for improving diagnostic and therapeutic endoscopic surgery.
    Dargahi J; Najarian S
    Biomed Mater Eng; 2004; 14(2):151-66. PubMed ID: 15156106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trauma Pod: a semi-automated telerobotic surgical system.
    Garcia P; Rosen J; Kapoor C; Noakes M; Elbert G; Treat M; Ganous T; Hanson M; Manak J; Hasser C; Rohler D; Satava R
    Int J Med Robot; 2009 Jun; 5(2):136-46. PubMed ID: 19222048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consideration of ergonomic aspects in the development of a new endoscopic navigation system.
    Scholz M; Dick S; Fricke B; Schmieder K; Engelhardt M; Tombrock S; Pechlivanis I; Harders A; Konen W
    Br J Neurosurg; 2005 Oct; 19(5):402-8. PubMed ID: 16455561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception.
    King CH; Culjat MO; Franco ML; Bisley JW; Dutson E; Grundfest WS
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2593-600. PubMed ID: 18990629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Positioning systems for endoscopic solo surgery].
    Arezzo A; Testa T; Ulmer F; Schurr MO; Degregori M; Buess GF
    Minerva Chir; 2000 Sep; 55(9):635-41. PubMed ID: 11155479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.