BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19174520)

  • 1. Chromosomal location targets different MYC family gene members for oncogenic translocations.
    Gostissa M; Ranganath S; Bianco JM; Alt FW
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2265-70. PubMed ID: 19174520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification.
    Difilippantonio MJ; Petersen S; Chen HT; Johnson R; Jasin M; Kanaar R; Ried T; Nussenzweig A
    J Exp Med; 2002 Aug; 196(4):469-80. PubMed ID: 12186839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching.
    Wang JH; Alt FW; Gostissa M; Datta A; Murphy M; Alimzhanov MB; Coakley KM; Rajewsky K; Manis JP; Yan CT
    J Exp Med; 2008 Dec; 205(13):3079-90. PubMed ID: 19064702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells.
    Rooney S; Sekiguchi J; Whitlow S; Eckersdorff M; Manis JP; Lee C; Ferguson DO; Alt FW
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2410-5. PubMed ID: 14983023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histone H2AX suppresses translocations in lymphomas of Eμ-c-Myc transgenic mice that contain a germline amplicon of tumor-promoting genes.
    Fusello A; Horowitz J; Yang-Iott K; Brady BL; Yin B; Rowh MA; Rappaport E; Bassing CH
    Cell Cycle; 2013 Sep; 12(17):2867-75. PubMed ID: 23966158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma.
    Date Y; Taniuchi I; Ito K
    Gene; 2022 Apr; 819():146234. PubMed ID: 35114276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of combined hepatocellular-cholangiocarcinoma through transdifferentiation and dedifferentiation in p53-knockout mice.
    Liu Y; Xin B; Yamamoto M; Goto M; Ooshio T; Kamikokura Y; Tanaka H; Meng L; Okada Y; Mizukami Y; Nishikawa Y
    Cancer Sci; 2021 Aug; 112(8):3111-3124. PubMed ID: 34051011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplifying mechanisms of lymphomagenesis.
    Roth DB
    Mol Cell; 2002 Jul; 10(1):1-2. PubMed ID: 12150897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired nonhomologous end-joining provokes soft tissue sarcomas harboring chromosomal translocations, amplifications, and deletions.
    Sharpless NE; Ferguson DO; O'Hagan RC; Castrillon DH; Lee C; Farazi PA; Alson S; Fleming J; Morton CC; Frank K; Chin L; Alt FW; DePinho RA
    Mol Cell; 2001 Dec; 8(6):1187-96. PubMed ID: 11779495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.
    Valente LJ; Grabow S; Vandenberg CJ; Strasser A; Janic A
    Oncogene; 2016 Jul; 35(29):3866-71. PubMed ID: 26640149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis.
    Yu D; Thomas-Tikhonenko A
    Oncogene; 2002 Mar; 21(12):1922-7. PubMed ID: 11896625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of lymphomagenic oncogenes in T-cell lymphomas of HPV 16 transgenic mice.
    Yang JT; Liu CZ; Domer P; Iannaccone P
    Cancer Detect Prev; 1998; 22(5):405-15. PubMed ID: 9727621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice.
    Yan CT; Kaushal D; Murphy M; Zhang Y; Datta A; Chen C; Monroe B; Mostoslavsky G; Coakley K; Gao Y; Mills KD; Fazeli AP; Tepsuporn S; Hall G; Mulligan R; Fox E; Bronson R; De Girolami U; Lee C; Alt FW
    Proc Natl Acad Sci U S A; 2006 May; 103(19):7378-83. PubMed ID: 16670198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA Ligase IV Syndrome R278H Mutation Impairs B Lymphopoiesis via Error-Prone Nonhomologous End-Joining.
    Park J; Welner RS; Chan MY; Troppito L; Staber PB; Tenen DG; Yan CT
    J Immunol; 2016 Jan; 196(1):244-55. PubMed ID: 26608917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. p53 and p73 in suppression of Myc-driven lymphomagenesis.
    Griesmann H; Schlereth K; Krause M; Samans B; Stiewe T
    Int J Cancer; 2009 Jan; 124(2):502-6. PubMed ID: 18942718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biology of the lymphomas: cytogenetics, molecular biology, and virology.
    Ambinder RF; Griffin CA
    Curr Opin Oncol; 1991 Oct; 3(5):806-12. PubMed ID: 1661167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental context determines latency of MYC-induced tumorigenesis.
    Beer S; Zetterberg A; Ihrie RA; McTaggart RA; Yang Q; Bradon N; Arvanitis C; Attardi LD; Feng S; Ruebner B; Cardiff RD; Felsher DW
    PLoS Biol; 2004 Nov; 2(11):e332. PubMed ID: 15455033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations.
    Zhu C; Mills KD; Ferguson DO; Lee C; Manis J; Fleming J; Gao Y; Morton CC; Alt FW
    Cell; 2002 Jun; 109(7):811-21. PubMed ID: 12110179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of a Single Mcl-1 Allele Inhibits MYC-Driven Lymphomagenesis by Sensitizing Pro-B Cells to Apoptosis.
    Grabow S; Delbridge AR; Aubrey BJ; Vandenberg CJ; Strasser A
    Cell Rep; 2016 Mar; 14(10):2337-47. PubMed ID: 26947081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells.
    Valsesia-Wittmann S; Magdeleine M; Dupasquier S; Garin E; Jallas AC; Combaret V; Krause A; Leissner P; Puisieux A
    Cancer Cell; 2004 Dec; 6(6):625-30. PubMed ID: 15607966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.