These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 19174549)
1. Two crystal structures of lysyl-tRNA synthetase from Bacillus stearothermophilus in complex with lysyladenylate-like compounds: insights into the irreversible formation of the enzyme-bound adenylate of L-lysine hydroxamate. Sakurama H; Takita T; Mikami B; Itoh T; Yasukawa K; Inouye K J Biochem; 2009 May; 145(5):555-63. PubMed ID: 19174549 [TBL] [Abstract][Full Text] [Related]
2. Lysyl-tRNA synthetase from Bacillus stearothermophilus. Formation and isolation of an enzyme-lysyladenylate complex and its analogue. Takita T; Hashimoto S; Ohkubo Y; Muto T; Shimizu N; Sukata T; Inouye K; Hiromi K; Tonomura B J Biochem; 1997 Feb; 121(2):244-50. PubMed ID: 9089397 [TBL] [Abstract][Full Text] [Related]
3. Order of binding of substrate to valyl-tRNA synthetase from Bacillus stearothermophilus in amino acid activation reaction. Kakitani M; Tonomura B; Hiromi K Biochem Int; 1987 Apr; 14(4):597-603. PubMed ID: 3453086 [TBL] [Abstract][Full Text] [Related]
4. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase. Yaremchuk A; Tukalo M; Grøtli M; Cusack S J Mol Biol; 2001 Jun; 309(4):989-1002. PubMed ID: 11399074 [TBL] [Abstract][Full Text] [Related]
5. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. Arnez JG; Dock-Bregeon AC; Moras D J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708 [TBL] [Abstract][Full Text] [Related]
7. Lysyl-tRNA synthetase from Bacillus stearothermophilus. Purification, and fluorometric and kinetic analysis of the binding of substrates, L-lysine and ATP. Takita T; Ohkubo Y; Shima H; Muto T; Shimizu N; Sukata T; Ito H; Saito Y; Inouye K; Hiromi K; Tonomura B J Biochem; 1996 Apr; 119(4):680-9. PubMed ID: 8743569 [TBL] [Abstract][Full Text] [Related]
8. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase. Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase. Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776 [TBL] [Abstract][Full Text] [Related]
10. Substrate-induced conformational changes of the truncated catalytic domain of Geobacillus stearothermophilus lysyl-tRNA synthetase as examined by fluorescence. Saruwatari Y; Wada T; Takita T; Inouye K Biochim Biophys Acta; 2008 Nov; 1784(11):1633-40. PubMed ID: 18675944 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate. Belrhali H; Yaremchuk A; Tukalo M; Larsen K; Berthet-Colominas C; Leberman R; Beijer B; Sproat B; Als-Nielsen J; Grübel G Science; 1994 Mar; 263(5152):1432-6. PubMed ID: 8128224 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of phenylalanyl-tRNA synthetase complexed with phenylalanine and a phenylalanyl-adenylate analogue. Reshetnikova L; Moor N; Lavrik O; Vassylyev DG J Mol Biol; 1999 Apr; 287(3):555-68. PubMed ID: 10092459 [TBL] [Abstract][Full Text] [Related]
13. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Desogus G; Todone F; Brick P; Onesti S Biochemistry; 2000 Jul; 39(29):8418-25. PubMed ID: 10913247 [TBL] [Abstract][Full Text] [Related]
14. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Yanagisawa T; Ishii R; Fukunaga R; Kobayashi T; Sakamoto K; Yokoyama S Chem Biol; 2008 Nov; 15(11):1187-97. PubMed ID: 19022179 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. Carter CW; Doublié S; Coleman DE J Mol Biol; 1994 May; 238(3):346-65. PubMed ID: 8176729 [TBL] [Abstract][Full Text] [Related]
16. Crystal structures of Entamoeba histolytica lysyl-tRNA synthetase reveal conformational changes upon lysine binding and a specific helix bundle domain. Bonnefond L; Castro de Moura M; Ribas de Pouplana L; Nureki O FEBS Lett; 2014 Nov; 588(23):4478-86. PubMed ID: 25448989 [TBL] [Abstract][Full Text] [Related]
17. Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Terada T; Nureki O; Ishitani R; Ambrogelly A; Ibba M; Söll D; Yokoyama S Nat Struct Biol; 2002 Apr; 9(4):257-62. PubMed ID: 11887185 [TBL] [Abstract][Full Text] [Related]
18. A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site. Yanagisawa T; Sumida T; Ishii R; Yokoyama S Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):5-15. PubMed ID: 23275158 [TBL] [Abstract][Full Text] [Related]
19. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Jakubowski H Biochemistry; 1997 Sep; 36(37):11077-85. PubMed ID: 9287150 [TBL] [Abstract][Full Text] [Related]
20. Discrimination of cognate and noncognate substrates at the active site of class II lysyl-tRNA synthetase. Ataide SF; Ibba M Biochemistry; 2004 Sep; 43(37):11836-41. PubMed ID: 15362869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]