These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 19174849)
1. Effects of laser radiation on Rhus vernicifera laccase, Type 2 Cu-depleted laccase, and stellacyanin. Musci G; Tosi L; Desideri A; Morpurgo L; Garnier-Suillerot A J Inorg Biochem; 1984 Jan; 20(1):87-92. PubMed ID: 19174849 [TBL] [Abstract][Full Text] [Related]
2. A resonance Raman study of native stellacyanin and its Ni(II) derivative. On the origin of the 450-nm electronic absorption. Musci G; Desideri A; Morpurgo L; Tosi L J Inorg Biochem; 1985 Feb; 23(2):93-102. PubMed ID: 19174850 [TBL] [Abstract][Full Text] [Related]
3. Alkaline transition of Rhus vernicifera stellacyanin, an unusual blue copper protein. Fernández CO; Sannazzaro AI; Vila AJ Biochemistry; 1997 Aug; 36(34):10566-70. PubMed ID: 9265638 [TBL] [Abstract][Full Text] [Related]
4. Room temperature ESR spectra of Rhus vernicifera laccase and derivatives. Sakurai T; Takahashi J Biochem Biophys Res Commun; 1995 Oct; 215(1):235-40. PubMed ID: 7575597 [TBL] [Abstract][Full Text] [Related]
5. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism. Morpurgo L; Hartmann HJ; Desideri A; Weser U; Rotilio G Biochem J; 1983 May; 211(2):515-7. PubMed ID: 6307284 [TBL] [Abstract][Full Text] [Related]
6. Effects of lacquer polysaccharides, glycoproteins and isoenzymes on the activity of free and immobilised laccase from Rhus vernicifera. Wan YY; Lu R; Akiyama K; Okamoto K; Honda T; Du YM; Yoshida T; Miyakoshi T; Knill CJ; Kennedy JF Int J Biol Macromol; 2010 Jul; 47(1):76-81. PubMed ID: 20363247 [TBL] [Abstract][Full Text] [Related]
7. Structure of the M148Q mutant of rusticyanin at 1.5 A: a model for the copper site of stellacyanin. Hough MA; Hall JF; Kanbi LD; Hasnain SS Acta Crystallogr D Biol Crystallogr; 2001 Mar; 57(Pt 3):355-60. PubMed ID: 11223511 [TBL] [Abstract][Full Text] [Related]
8. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. Battistuzzi G; Bellei M; Leonardi A; Pierattelli R; De Candia A; Vila AJ; Sola M J Biol Inorg Chem; 2005 Dec; 10(8):867-73. PubMed ID: 16231129 [TBL] [Abstract][Full Text] [Related]
9. Alkaline transition of phytocyanins: a comparison of stellacyanin and umecyanin. Dennison C; Harrison MD; Lawler AT Biochem J; 2003 Apr; 371(Pt 2):377-83. PubMed ID: 12529171 [TBL] [Abstract][Full Text] [Related]
10. The metal site of stellacyanin: EXAFS studies of the Cu(II), Cu(I), Ni(II) and Co(II) derivatives. Feiters MC; Dahlin S; Reinhammar B Biochim Biophys Acta; 1988 Jul; 955(2):250-60. PubMed ID: 2840126 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. Reinhammar B; Oda Y J Inorg Biochem; 1979 Oct; 11(2):115-27. PubMed ID: 228004 [TBL] [Abstract][Full Text] [Related]
12. The state of copper in stellacyanin and laccase from the lacquer tree Rhus vernicifera. Malmström BG; Reinhammar B; Vänngård T Biochim Biophys Acta; 1970 Apr; 205(1):48-57. PubMed ID: 4314765 [No Abstract] [Full Text] [Related]
13. Spectroscopy and reactivity of the type 1 copper site in Fet3p from Saccharomyces cerevisiae: correlation of structure with reactivity in the multicopper oxidases. Machonkin TE; Quintanar L; Palmer AE; Hassett R; Severance S; Kosman DJ; Solomon EI J Am Chem Soc; 2001 Jun; 123(23):5507-17. PubMed ID: 11389633 [TBL] [Abstract][Full Text] [Related]
15. Structural and spectroscopic studies of the copper site of stellacyanin. Strange RW; Reinhammar B; Murphy LM; Hasnain SS Biochemistry; 1995 Jan; 34(1):220-31. PubMed ID: 7819200 [TBL] [Abstract][Full Text] [Related]
16. Intramolecular electron transfer in laccases. Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996 [TBL] [Abstract][Full Text] [Related]
17. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase. Agostinelli E; Cervoni L; Giartosio A; Morpurgo L Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562 [TBL] [Abstract][Full Text] [Related]
18. 1H NMR of native and azide-inhibited laccase from Rhus vernicifera. Battistuzzi G; Di Rocco G; Leonardi A; Sola M J Inorg Biochem; 2003 Sep; 96(4):503-6. PubMed ID: 13678817 [TBL] [Abstract][Full Text] [Related]
19. A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. Zoppellaro G; Sakurai T; Huang H J Biochem; 2001 Jun; 129(6):949-53. PubMed ID: 11388911 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the structure of the blue copper protein from Rhus vernicifera stellacyanin by 1H nuclear magnetic resonance spectroscopy. Hill HA; Lee WK J Inorg Biochem; 1979 Oct; 11(2):101-13. PubMed ID: 159343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]