These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 19174892)
1. Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils. Stuckey JW; Neaman A; Ravella R; Komarneni S; Martínez CE Environ Sci Technol; 2008 Dec; 42(24):9197-202. PubMed ID: 19174892 [TBL] [Abstract][Full Text] [Related]
2. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils. Stuckey JW; Neaman A; Ravella R; Komarneni S; Martínez CE Environ Pollut; 2009 Jan; 157(1):12-6. PubMed ID: 18977059 [TBL] [Abstract][Full Text] [Related]
3. Highly charged swelling mica-type clays for selective Cu exchange. Ravella R; Komarneni S; Martinez CE Environ Sci Technol; 2008 Jan; 42(1):113-8. PubMed ID: 18350884 [TBL] [Abstract][Full Text] [Related]
4. Long-term aging of copper added to soils. Ma Y; Lombi E; Oliver IW; Nolan AL; McLaughlin MJ Environ Sci Technol; 2006 Oct; 40(20):6310-7. PubMed ID: 17120558 [TBL] [Abstract][Full Text] [Related]
5. Inter-regional variability in environmental availability of fungicide derived copper in vineyard soils: an Australian case study. Wightwick AM; Salzman SA; Reichman SM; Allinson G; Menzies NW J Agric Food Chem; 2010 Jan; 58(1):449-57. PubMed ID: 20000746 [TBL] [Abstract][Full Text] [Related]
6. Remediation of copper polluted red soils with clay materials. Zhang G; Lin Y; Wang M J Environ Sci (China); 2011; 23(3):461-7. PubMed ID: 21520816 [TBL] [Abstract][Full Text] [Related]
7. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
8. Phytostabilization-Management Strategy for Stabilizing Trace Elements in Contaminated Soils. Radziemska M; Vaverková MD; Baryła A Int J Environ Res Public Health; 2017 Aug; 14(9):. PubMed ID: 28841169 [TBL] [Abstract][Full Text] [Related]
9. Difference of lead, copper and zinc concentrations between interiors and exteriors of peds in some contaminated soils. Zhang MK; Xu JM Chemosphere; 2003 Feb; 50(6):733-8. PubMed ID: 12688484 [TBL] [Abstract][Full Text] [Related]
10. Influence of soil properties and aging on the toxicity of copper on compost worm and barley. Daoust CM; Bastien C; Deschênes L J Environ Qual; 2006; 35(2):558-67. PubMed ID: 16510700 [TBL] [Abstract][Full Text] [Related]
11. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
12. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. Aşçi Y; Nurbaş M; Açikel YS J Hazard Mater; 2008 Jun; 154(1-3):663-73. PubMed ID: 18068293 [TBL] [Abstract][Full Text] [Related]
13. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques. Lombi E; Hamon RE; McGrath SP; McLaughlin MJ Environ Sci Technol; 2003 Mar; 37(5):979-84. PubMed ID: 12666929 [TBL] [Abstract][Full Text] [Related]
14. Aided phytostabilisation of As- and Cu-contaminated soils using white lupin and combined iron and organic amendments. Fresno T; Moreno-Jiménez E; Zornoza P; Peñalosa JM J Environ Manage; 2018 Jan; 205():142-150. PubMed ID: 28982063 [TBL] [Abstract][Full Text] [Related]
15. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Song J; Zhao FJ; Luo YM; McGrath SP; Zhang H Environ Pollut; 2004; 128(3):307-15. PubMed ID: 14720473 [TBL] [Abstract][Full Text] [Related]
16. Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the Puchuncaví Valley, Chile. Neaman A; Huerta S; Sauvé S Ecotoxicol Environ Saf; 2012 Jun; 80():386-92. PubMed ID: 22534173 [TBL] [Abstract][Full Text] [Related]
17. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Soler-Rovira P; Madejón E; Madejón P; Plaza C Chemosphere; 2010 May; 79(8):844-9. PubMed ID: 20303567 [TBL] [Abstract][Full Text] [Related]
18. Distribution and mobility of exogenous copper as influenced by aging and components interactions in three Chinese soils. Shi H; Li Q; Chen W; Cai P; Huang Q Environ Sci Pollut Res Int; 2018 Apr; 25(11):10771-10781. PubMed ID: 29396824 [TBL] [Abstract][Full Text] [Related]
19. Availability and vertical distribution of Cu, Cd, Ca, and P in soil as influenced by lime and apatite with different dosages: a 7-year field study. Cui H; Zhang W; Zhou J; Xu L; Zhang X; Zhang S; Zhou J Environ Sci Pollut Res Int; 2018 Dec; 25(35):35143-35153. PubMed ID: 30328042 [TBL] [Abstract][Full Text] [Related]
20. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. Ye X; Kang S; Wang H; Li H; Zhang Y; Wang G; Zhao H J Hazard Mater; 2015 May; 289():210-218. PubMed ID: 25725344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]