These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 19174910)
1. Concomitant adsorption and desorption of organic vapor in dry and humid air streams using microwave and direct electrothermal swing adsorption. Hashisho Z; Emamipour H; Rood MJ; Hay KJ; Kim BJ; Thurston D Environ Sci Technol; 2008 Dec; 42(24):9317-22. PubMed ID: 19174910 [TBL] [Abstract][Full Text] [Related]
2. Steady-state and dynamic desorption of organic vapor from activated carbon with electrothermal swing adsorption. Emamipour H; Hashisho Z; Cevallos D; Rood MJ; Thurston DL; Hay KJ; Kim BJ; Sullivan PD Environ Sci Technol; 2007 Jul; 41(14):5063-9. PubMed ID: 17711224 [TBL] [Abstract][Full Text] [Related]
3. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth. Hashisho Z; Rood M; Botich L Environ Sci Technol; 2005 Sep; 39(17):6851-9. PubMed ID: 16190249 [TBL] [Abstract][Full Text] [Related]
4. Thermal reconditioning characteristics of a respirator cartridge for organic vapors using humid air as the desorption gas. Hori H; Ishidao T; Ishimatsu S J Occup Health; 2010; 52(2):125-31. PubMed ID: 20179378 [TBL] [Abstract][Full Text] [Related]
5. Rapid response concentration-controlled desorption of activated carbon to dampen concentration fluctuations. Hashisho Z; Emamipour H; Cevallos D; Rood MJ; Hay KJ; Kim BJ Environ Sci Technol; 2007 Mar; 41(5):1753-8. PubMed ID: 17396670 [TBL] [Abstract][Full Text] [Related]
6. Monitoring and Control of an Adsorption System Using Electrical Properties of the Adsorbent for Organic Compound Abatement. Hu MM; Emamipour H; Johnsen DL; Rood MJ; Song L; Zhang Z Environ Sci Technol; 2017 Jul; 51(13):7581-7589. PubMed ID: 28562025 [TBL] [Abstract][Full Text] [Related]
7. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth. Son HK; Sivakumar S; Rood MJ; Kim BJ J Hazard Mater; 2016 Jan; 301():27-34. PubMed ID: 26342148 [TBL] [Abstract][Full Text] [Related]
8. Effect of relative humidity on the adsorption of selected water-miscible organic vapors by activated carbon. Kawar KH; Underhill DW Am Ind Hyg Assoc J; 1999; 60(6):730-6. PubMed ID: 10635538 [TBL] [Abstract][Full Text] [Related]
9. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Long C; Liu P; Li Y; Li A; Zhang Q Environ Sci Technol; 2011 May; 45(10):4506-12. PubMed ID: 21488665 [TBL] [Abstract][Full Text] [Related]
10. Minimization of water vapor interference in the analysis of non-methane volatile organic compounds by solid adsorbent sampling. Karbiwnyk CM; Mills CS; Helmig D; Birks JW J Chromatogr A; 2002 Jun; 958(1-2):219-29. PubMed ID: 12134819 [TBL] [Abstract][Full Text] [Related]
11. Performance of an electrothermal swing adsorption system with postdesorption liquefaction for organic gas capture and recovery. Mallouk KE; Rood MJ Environ Sci Technol; 2013 Jul; 47(13):7373-9. PubMed ID: 23789711 [TBL] [Abstract][Full Text] [Related]
12. Microwave-induced combustion of volatile organic compounds in an industrial flue gas over the magnetite fixed-bed. Lee BN; Ying WT; Shen YT Chemosphere; 2007 Nov; 69(11):1821-6. PubMed ID: 17767944 [TBL] [Abstract][Full Text] [Related]
13. Effects of adsorbed water vapor on the adsorption rate constant and the kinetic adsorption capacity of the Wheeler kinetic model. Hall T; Breysse P; Corn M; Jonas LA Am Ind Hyg Assoc J; 1988 Sep; 49(9):461-5. PubMed ID: 3177225 [TBL] [Abstract][Full Text] [Related]
14. Capture and recovery of isobutane by electrothermal swing adsorption with post-desorption liquefaction. Mallouk KE; Johnsen DL; Rood MJ Environ Sci Technol; 2010 Sep; 44(18):7070-5. PubMed ID: 20722439 [TBL] [Abstract][Full Text] [Related]
15. Construction of a low-pressure microwave plasma reactor and its application in the treatment of volatile organic compounds. Yet-Pole I; Liu YC; Han KY; She TC Environ Sci Technol; 2004 Jul; 38(13):3785-91. PubMed ID: 15296333 [TBL] [Abstract][Full Text] [Related]
16. Microwave-Assisted Catalytic Combustion for the Efficient Continuous Cleaning of VOC-Containing Air Streams. Nigar H; Julián I; Mallada R; Santamaría J Environ Sci Technol; 2018 May; 52(10):5892-5901. PubMed ID: 29660983 [TBL] [Abstract][Full Text] [Related]
17. Modeling the Effect of Relative Humidity on Adsorption Dynamics of Volatile Organic Compound onto Activated Carbon. Laskar II; Hashisho Z; Phillips JH; Anderson JE; Nichols M Environ Sci Technol; 2019 Mar; 53(5):2647-2659. PubMed ID: 30730707 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Organic Vapor Breakthrough in Humidified Activated Carbon Beds: -Application of Wheeler-Jonas Equation, NIOSH MultiVapor™ and RBT (Relative Breakthrough Time). Abiko H; Furuse M; Takano T J Occup Health; 2016 Nov; 58(6):570-581. PubMed ID: 27725483 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. Li QL; Yuan DX; Lin QM J Chromatogr A; 2004 Feb; 1026(1-2):283-8. PubMed ID: 14763755 [TBL] [Abstract][Full Text] [Related]
20. Microwave plasma conversion of volatile organic compounds. Ko Y; Yang G; Chang DP; Kennedy IM J Air Waste Manag Assoc; 2003 May; 53(5):580-5. PubMed ID: 12774991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]