These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 19174918)
1. Improved passive treatment of high Zn and Mn concentrations using caustic magnesia (MgO): particle size effects. Rötting TS; Ayora C; Carrera J Environ Sci Technol; 2008 Dec; 42(24):9370-7. PubMed ID: 19174918 [TBL] [Abstract][Full Text] [Related]
2. Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Ayora C; Caraballo MA; Macias F; Rötting TS; Carrera J; Nieto JM Environ Sci Pollut Res Int; 2013 Nov; 20(11):7837-53. PubMed ID: 23508532 [TBL] [Abstract][Full Text] [Related]
3. Passive treatment of acid mine drainage with high metal concentrations using dispersed alkaline substrate. Rötting TS; Thomas RC; Ayora C; Carrera J J Environ Qual; 2008; 37(5):1741-51. PubMed ID: 18689735 [TBL] [Abstract][Full Text] [Related]
4. Passive in situ remediation of metal-polluted water with caustic magnesia: evidence from column experiments. Cortina JL; Lagreca I; De Pablo J; Cama J; Ayora C Environ Sci Technol; 2003 May; 37(9):1971-7. PubMed ID: 12775073 [TBL] [Abstract][Full Text] [Related]
5. Use of caustic magnesia to remove cadmium, nickel, and cobalt from water in passive treatment systems: column experiments. Rötting TS; Cama J; Ayora C; Cortina JL; De Pablo J Environ Sci Technol; 2006 Oct; 40(20):6438-43. PubMed ID: 17120577 [TBL] [Abstract][Full Text] [Related]
6. Implementation of an MgO-based metal removal step in the passive treatment system of Shilbottle, UK: column experiments. Caraballo MA; Rötting TS; Silva V J Hazard Mater; 2010 Sep; 181(1-3):923-30. PubMed ID: 20541861 [TBL] [Abstract][Full Text] [Related]
7. Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater. de Repentigny C; Courcelles B; Zagury GJ Environ Sci Pollut Res Int; 2018 Aug; 25(23):23205-23214. PubMed ID: 29862480 [TBL] [Abstract][Full Text] [Related]
8. Impacts of aqueous Mn(II) on the sorption of Zn(II) by hexagonal birnessite. Lefkowitz JP; Elzinga EJ Environ Sci Technol; 2015 Apr; 49(8):4886-93. PubMed ID: 25790186 [TBL] [Abstract][Full Text] [Related]
9. Use of magnesia for boron removal from irrigation water. Dionisiou N; Matsi T; Misopolinos ND J Environ Qual; 2006; 35(6):2222-8. PubMed ID: 17071892 [TBL] [Abstract][Full Text] [Related]
10. From highly polluted Zn-rich acid mine drainage to non-metallic waters: implementation of a multi-step alkaline passive treatment system to remediate metal pollution. Macías F; Caraballo MA; Rötting TS; Pérez-López R; Nieto JM; Ayora C Sci Total Environ; 2012 Sep; 433():323-30. PubMed ID: 22819882 [TBL] [Abstract][Full Text] [Related]
11. The use of Apatite II™ to remove divalent metal ions zinc(II), lead(II), manganese(II) and iron(II) from water in passive treatment systems: column experiments. Oliva J; De Pablo J; Cortina JL; Cama J; Ayora C J Hazard Mater; 2010 Dec; 184(1-3):364-374. PubMed ID: 20851514 [TBL] [Abstract][Full Text] [Related]
12. Processes controlling metal transport and retention as metal-contaminated groundwaters efflux through estuarine sediments. Simpson SL; Maher EJ; Jolley DF Chemosphere; 2004 Sep; 56(9):821-31. PubMed ID: 15261528 [TBL] [Abstract][Full Text] [Related]
13. Mineralogy and geochemistry of Zn-rich mine-drainage precipitates from an MgO passive treatment system by synchrotron-based X-ray analysis. Pérez-López R; Macías F; Caraballo MA; Nieto JM; Román-Ross G; Tucoulou R; Ayora C Environ Sci Technol; 2011 Sep; 45(18):7826-33. PubMed ID: 21819094 [TBL] [Abstract][Full Text] [Related]
14. Formation of MgO-supported manganese carbonyl complexes by chemisorption of Mn(CO)5CH3. Khabuanchalad S; Wittayakun J; Lobo-Lapidus RJ; Stoll S; Britt RD; Gates BC Langmuir; 2013 May; 29(21):6279-86. PubMed ID: 23679854 [TBL] [Abstract][Full Text] [Related]
15. Effect of composting on the Cd, Zn and Mn content and fractionation in feedstock mixtures with wood chips from a short-rotation coppice and bark. Vandecasteele B; Willekens K; Zwertvaegher A; Degrande L; Tack FM; Du Laing G Waste Manag; 2013 Nov; 33(11):2195-203. PubMed ID: 23860497 [TBL] [Abstract][Full Text] [Related]
16. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Butler BA Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291 [TBL] [Abstract][Full Text] [Related]
17. Modeling of the clogging in a MgO column used to treat a Ni- and Co-contaminated water and performance prediction for a centripetal radial column. de Repentigny C; Zagury GJ; Courcelles B Chemosphere; 2019 Dec; 236():124307. PubMed ID: 31330432 [TBL] [Abstract][Full Text] [Related]
18. [The quality evaluation of magnesium oxide tablet due to acid neutralization action]. Hamaguchi T; Kamata A; Muraoka R; Kuramoto M; Nakamoto T; Shikata T; Kadobayashi M Yakugaku Zasshi; 2005 Jun; 125(6):525-30. PubMed ID: 15930821 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of high concentrations of soluble Mn(II) from electrolytic manganese solid waste using inorganic chemicals. Du B; Hou D; Duan N; Zhou C; Wang J; Dan Z Environ Sci Pollut Res Int; 2015 May; 22(10):7782-93. PubMed ID: 25728200 [TBL] [Abstract][Full Text] [Related]
20. Carbonating MgO for treatment of manganese- and cadmium-contaminated soils. Li W; Qin J; Yi Y Chemosphere; 2021 Jan; 263():128311. PubMed ID: 33297247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]